Math, asked by ezuna, 6 hours ago

two angles of a quadrilateral are 80° and 180° the other two angles are equal. find the other two angles​

Answers

Answered by poojaatri
2
Angle 1 = 80
Angle 2 = 180
Angle 3 = x
Angle 4 = x

The sun of the angles of quadrilateral = 360
80 + 180 + x + x = 360
260 + 2x = 360
2x = 360 - 260
2x = 100
x = 50
Answered by Okhey
3

\large{\underline{\underline{ \bf{⎆Question:-}}}}

  • Two angles of a quadrilateral are 80° and 180° the other two angles are equal. Find the other two angles.

\large{\underline{\underline{ \bf{☂Solution:-}}}}

 ➥ \tt{Let \: the\:angels\:be\:∠A\:,\:∠B\:,\:∠C\: and \:∠D \: respective}

  \pink{ \small \underline{ \mathbb{\underline{ ✰ Given\:two\:angles\:are\:equal : }}}}

 ➫\:  \tt{Then\:,\: ∠A\:=\:∠B\:=\:x}

 ➫\:  \tt{Also\:,\: ∠C\:=\:80° \:and \:∠D\:=\:180°}

\small\fbox\red{ ✰ Sum of angles of quadrilateral = 360⁰ }

\tt{∴∠A \: + \: ∠B \: +∠C+∠D \: = \: 360⁰}

 ⇝ \tt{x + x +  {80}^{0}  + \: {180}^{0} = {360}^{0} }

 ⇝ \tt{ 2x +  {260}^{0}  +  = {360}^{0} }

 ⇝ \tt{ 2x    = {360}^{0}  -    {260}^{0}  }

 ⇝ \tt{ 2x    = {100}^{0}  }

 ⇝ \tt{ x    = {50}^{0}  }

  • Hence , the other two angles are 50⁰.
Similar questions