Math, asked by aybrainy, 7 months ago

two angles of a quadrilateral are of measure 50°, and other two angles are equal.What is themeasure of each of these two angles?​

Answers

Answered by riya15042006
4

Answer:

The measure of other two angles is 130 °

Step-by-step explanation:

Let the other two angles be x and y...

50 + 50 + x + y = 360 °

100 + x + x = 360 ° ( x = y )

100 + 2x = 360 °

2x = 360 - 100

2x = 260

x = 260 / 2

x = 130 °

so .. y = 130 ° ( x = y )

I hope it helps u cherry ^_^♡♡

sorry cherry at the starting i miscalcated it..

Answered by ItzLoveHunter
49

{\huge{\pink{\underline{\underline{Answes}}}}}

\bold{Given}

Two angles of a quadrilateral are of measure= 50°

So {∠P} and {∠Q} = 50°

And other two angles are equal.

So the other two are {∠R} = {∠S} -----(1)

Sum if quadrilateral is = 360°

\bold{\:\:\:\:\:\:\:\:\:\:\:⇒{∠P} + {∠Q} + {∠R} + {∠S} = 360°}

\bold{\:\:\:\:\:\:\:\:\:\:\:⇒50° + 50°  + {∠R} + {∠S} = 360°}

\bold{\:\:\:\:\:\:\:\:\:\:\:⇒50°+ 50° + {∠R} + {∠R} = 360°} (from eq [1])

\bold{\:\:\:\:\:\:\:\:\:\:\:⇒100° + 2{∠R} = 360°}

\bold{\:\:\:\:\:\:\:\:\:\:\:⇒2{∠R} = 360° - 100°}

\bold{\:\:\:\:\:\:\:\:\:\:\:⇒2{∠R} = 260°}

\bold{\:\:\:\:\:\:\:\:\:\:\:⇒{∠R} = \frac{260}{2}}

\bold{\:\:\:\:\:\:\:\:\:\:\:⇒{∠R} = 130°}

So {∠R} = 130° Then {∠S} = 130°

Similar questions