Math, asked by jayasjotwal, 4 months ago

Two angles of a triangle are equal and the third angle is 70'. Find the measure of equal angles.​

Answers

Answered by Saby123
11

Solution :

In the above question, it is given that two angles of a triangle are equal and the third angle is 70° .

Let us assume that the equal angles measure x° each .

Now , for a triangle :

Sum of all angles in a triangle is π °s .

So,

x° + x° + 70° = 180°

> 2x° + 70° = 180°

> 2x° = 180° - 70°

> 2x° = 110°

> x° = 110/2 °

> x = 55° .

Thus , the equal angles of this isosceles triangle are 55° and 55° respectively.

This is the required answer.

_____________________________________________

Answered by BrainlyPearl
15

\sf\Large{\underline{\underline{Answer:-}}}

Given,

  • Two Angles of a triangle are equal.
  • Third angle is 70°
  • Find the measure of equal Angles.

We know that the the sum of the Angles of a triangle is always 180°. And it is given that the third side is 70° , so let's find the other two equal sides.

\begin{gathered}\\\;\sf{:\rightarrow\;\;\;=\;\bf{{ x \times x + 70} = \large\boxed { \sf \orange{180}}\:}}\end{gathered}

 \:  \:  \:  \: \begin{gathered}\\\;\sf{:\rightarrow\;\;\;=\;\bf{{ 2x  + 70} =180\:}}\end{gathered}

 \:  \:  \:  \:  \:  \: \begin{gathered}\\\;\sf{:\rightarrow\;\;\;\bf{{ 2x} =  180 - 70\:}}\end{gathered}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \begin{gathered}\\\;\sf{:\rightarrow\;\;\;\bf{{ 2x} =  110\:}}\end{gathered}

 \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \begin{gathered}\\\;\sf{:\rightarrow\;\;\;\bf{x \:  = \sf{\cancel\dfrac{110}{2}}}}\end{gathered}

  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \begin{gathered}\\\;\sf{:\rightarrow\;\;\;\bf{\large\boxed { \sf \red{x \:  =  \: 55}}}}\end{gathered}

{\underline{\underline{\sf{\green{Given,}}}}}

The other two Angles will be 55° each .

Similar questions