Two angles of a triangle are in the ratio 1:2 and its third angle is 60° . Find the other two angles of the triangle.
Answers
Answer:
From the triangle ABC
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7x
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘x=120∘/12=10∘
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘x=120∘/12=10∘So we get
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘x=120∘/12=10∘So we get∠B=5x=5××10∘=50∘
From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘x=120∘/12=10∘So we get∠B=5x=5××10∘=50∘∠C=7x=7××10∘=70∘