Math, asked by visheshprajapati, 6 months ago

Two angles of a triangle are in the ratio 1:2 and its third angle is 60° . Find the other two angles of the triangle.



Answers

Answered by itsmeavani
2

Answer:

From the triangle ABC

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7x

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘x=120∘/12=10∘

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘x=120∘/12=10∘So we get

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘x=120∘/12=10∘So we get∠B=5x=5××10∘=50∘

From the triangle ABCConsider ∠A=60∘,∠B:∠C=5:7In a triangle∠A+∠B+∠∠C=180∘Substituting the values60∘+∠B+∠C=180∘By further calculation∠B+∠C=180∘–60∘=120∘Take ∠B=5x and ∠C=7xSubstituting the values5x+7x=120∘12x=120∘x=120∘/12=10∘So we get∠B=5x=5××10∘=50∘∠C=7x=7××10∘=70∘

Similar questions