Math, asked by rahulbhai8596, 6 months ago

Two angles of a triangle are in the ratio 7: 11 and the third angle is 72. Find the two angles,​

Answers

Answered by piyushbansal45
1

Answer:

42,66

Step-by-step explanation:

sum of all angles =180

7x +11x+72=180

18x=108

x=108/18

x=6

7x=7×6

=42

11x=11×6

=66

MARK ME AS BRAINLIEST

Answered by sethrollins13
35

Given :

  • Two angles of a triangle are in the ratio 7:11 .
  • Third angle of triangle is 72° .

To Find :

  • Two angles .

Solution :

\longmapsto\tt{Let\:first\:angle\:be=7x}

\longmapsto\tt{Let\:second\:angle\:be=11x}

As we know that Sum of all angles of a triangle is 180° . So ,

\longmapsto\tt{7x+11x+72^{\circ}=180^{\circ}}

\longmapsto\tt{18x+72^{\circ}=180^{\circ}}

\longmapsto\tt{18x=180^{\circ}-72^{\circ}}

\longmapsto\tt{18x=108^{\circ}}

\longmapsto\tt{x=\cancel\dfrac{108}{18}}

\longmapsto\tt\bf{x=6}

Value of x is 6 ..

Therefore :

\longmapsto\tt{Measure\:of\:First\:Angle=7(6)}

\longmapsto\tt\bf{42^{\circ}}

\longmapsto\tt{Measure\:of\:First\:Angle=11(6)}

\longmapsto\tt\bf{66^{\circ}}

_______________________

VERIFICATION :

\longmapsto\tt{7x+11x+72^{\circ}=180^{\circ}}

\longmapsto\tt{7(6)+11(6)+72^{\circ}=180^{\circ}}

\longmapsto\tt{42^{\circ}+66^{\circ}+72^{\circ}=180^{\circ}}

\longmapsto\tt\bf{180^{\circ}=180^{\circ}}

HENCE VERIFIED

Similar questions