Math, asked by ashwinikhandarkar198, 2 months ago

two angles of quadrilateral are of
measure 65 degree and other two angle are equal. what os measure of this two angle.​

Answers

Answered by Clαrissα
86

Given :

  • Two angles of a quadrilateral measures 60° and other two angles are equal.

To Find :

  • The measure the two angles.

Solution :

As we know that,

  •  \underline{ \boxed{ \sf{Sum \: of \: all \: angles_{(Quadrilateral)} = 360^{\circ}}}}

Assumption: Let us assume the other two angles as x.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \:  \: \bf \: 65^{\circ} + 65^{\circ} + x + x = 360^{\circ} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \:  \: \bf \: 130^{\circ} + 2x = 360^{\circ} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \:  \: \bf \: 2x = 360^{\circ} - 130^{\circ}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \:  \: \bf \: 2x = 230^{\circ}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \:  \: \bf \: x = \cancel\dfrac{230^{\circ}}{2} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \: \: \underline{ \boxed{ \bf{x = 115^{\circ}}}} \pink{ \bigstar}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \therefore \:  \underline{ \sf{The \: measure \: of \: other \: two \: angles \:  =  \:  \bf{115^{\circ}}}} \\

⠀⠀⠀⠀______________

V E R I F I C A T I O N :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \:  \: \bf \: 65^{\circ} + 65^{\circ} + 115^{\circ} + 115^{\circ} = 360^{\circ} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \:  \: \bf \: 130^{\circ} + 230^{\circ} = 360^{\circ} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \:  \: \bf \: 360^{\circ} = 360^{\circ} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dashrightarrow \: \: \underline{\sf{\pmb{L.H.S = R.H.S}}}

Hence, verified!

Answered by BrainlySparrow
161

Step-by-step explanation:

 \huge\sf\blue{Given:} \:

Two angles of a quadrilateral are of measure 65° and other two are equal.

 \huge\sf\blue{To  \: Find:} \:

Measure of two other angles

 \huge\sf\blue{Solution:} \:

We know that,

Sum of all the angles (Quadrilateral ) = 360°

Let the missing two angles be x.

 \implies \displaystyle{ {65}^{ \circ} } +  {65}^{ \circ}  + x + x =  {360 }^{ \circ}

 \implies \displaystyle{ {130}^{ \circ} } + 2x =  {360}^{ \circ}

 \implies \displaystyle{2x =  {360}^{ \circ \: }  -  {130}^{ \circ \: } }

 \implies \displaystyle{2x =  {230}^{ \circ \: } }

 \implies \displaystyle{x =  \cancel \frac{ {230}^{ \circ \: } }{2} }

x = 115°

The other two angles measure 115°.

Verification :

 \implies \displaystyle{ {65}^{ \circ} +   {65}^{\circ \: }  +  {115}^{\circ \: }  +  {115}^{\circ \: }  =  {360}^{\circ \: } }

 \displaystyle{ {130}^{\circ \: }  +  {230}^{\circ \:  \:  }  =   {360}^{\circ \: } }

 \displaystyle{ {360}^{\circ \: } =   {360}^{\circ \: }   }

 \displaystyle{L.H.S  = R.H.S \: }

Hence, Verified

 \huge\sf\blue{More  \:  \: Information :} \:

✪ Sum of all the angles of a triangle is 180°.

✪ Sum of all the angles of a square is 360°.

✪ Area of a rectangle = Area of a parallelogram

Similar questions