Math, asked by malaikaamwar, 20 days ago

two bags were sold for rupees 500 each .the shopkeeper made a loss of 10 % on the first and a profit of 8% on the other . Find his total gain or loss percent in the whole tranction​

Answers

Answered by sahoosayantani176
0

Answer:

Cost price of a T.V set =Rs 10000 

profit =10%

Selling price =[100+p/100]×C.P

=[100+10/100]×10000

=110/100×10000

=11×1000

=Rs. 11000

Loss =10%

Selling price =[100−L/100]×C.P

=100−10/100×10000

=90/100×10000

=9×1000

=9000

Total cost price =10000+10000 =20000

Total selling price =11000+9000=20000

Here C.P=S.P

Therefore, it is neither Loss nor Profit.

Answered by MonoranjanDas
0

Step-by-step explanation:

first case

SP of the bag = Rs.500

loss = 10%

CP = ?

cp \: of \: the \: first \: bag \:  = sp \times  \frac{100}{100 - loss\%}

 = 500 \times  \frac{100}{100 - 10}

 = 500 \times  \frac{100}{90}

 =  \frac{5000}{9}

second case

SP = Rs. 500

profit = 8%

CP of the second bag = ?

cp \: of \: the \: 2nd \: bag \:  = sp \times  \frac{100}{100 + profit\%}

 = 500 \times  \frac{100}{100 + 8}

 = 500 \times  \frac{100}{108}

  = \frac{12500}{27}

Now total CP of two bags

 =  \frac{5000}{9}  +  \frac{12500}{27}

 =  \frac{15000 + 12500}{27}

 =  \frac{27500}{27}

 = 1018 \frac{14}{27}

Total SP = Rs. 500 + Rs. 500

= Rs. 1000

Here CP< SP

So there is loss

total \: loss = 1018 \frac{14}{27}  - 1000

 = 18 \frac{14}{27}

loss =   \frac{18 \frac{14}{27} }{1018 \frac{14}{27} }  \times 100\%

  =  \frac{ \frac{500}{27} }{ \frac{2750</p><p></p><p>0}{27} }

 =  \frac{500}{27}  \times  \frac{27}{27500}  \times 100\%

 =  \frac{100}{55} \%

 =  \frac{20}{11} \%

 = 1 \frac{9}{11} \%

so \: loss \: percent = 1 \frac{9}{11} \%

Similar questions