Two balls are projected from the same point in directions 30° and 60° with respect to the horizontal. What is the ratio of their initial velocities if they (a) attain the same height? (b) have the same range?
Answers
Answered by
41
Hii dear,
# Given-
θ1=30°
θ2=60°
# Formula-
- Height-
H = u^2.(sinθ)^2 / 2g
- Range-
R = u^2.sin2θ / g
# Calculations-
Let u1 and u2 be the initial velocities for angle 30° and angle 60°.
a) When range is same,
R1 = R2
u1^2.sin60/g = u2^2.sin120/g
u1^2×0.866 = u2^2×0.866
u1 = u2
u1/u2 = 1
b) When heights are same,
H1 = H2
u1^2.(sin30)^2/2g = u2^2.(sin60)^2/2g
u1^2×(0.5)^2 = u2^2×(0.866)^2
0.25×u1^2 = 0.75×u2^2
u1^2 = 3×u2^2
u1/u2 = √3
Hope that helped you...
# Given-
θ1=30°
θ2=60°
# Formula-
- Height-
H = u^2.(sinθ)^2 / 2g
- Range-
R = u^2.sin2θ / g
# Calculations-
Let u1 and u2 be the initial velocities for angle 30° and angle 60°.
a) When range is same,
R1 = R2
u1^2.sin60/g = u2^2.sin120/g
u1^2×0.866 = u2^2×0.866
u1 = u2
u1/u2 = 1
b) When heights are same,
H1 = H2
u1^2.(sin30)^2/2g = u2^2.(sin60)^2/2g
u1^2×(0.5)^2 = u2^2×(0.866)^2
0.25×u1^2 = 0.75×u2^2
u1^2 = 3×u2^2
u1/u2 = √3
Hope that helped you...
Answered by
66
(a) attain the same height
we know, maximum height ,![h_{max}=\frac{u^2sin^2\theta}{2g} h_{max}=\frac{u^2sin^2\theta}{2g}](https://tex.z-dn.net/?f=h_%7Bmax%7D%3D%5Cfrac%7Bu%5E2sin%5E2%5Ctheta%7D%7B2g%7D)
given,
![\theta_2=60^{\circ} \theta_2=60^{\circ}](https://tex.z-dn.net/?f=%5Ctheta_2%3D60%5E%7B%5Ccirc%7D)
![h_1=\frac{u_1^2sin^2\theta_1}{2g} h_1=\frac{u_1^2sin^2\theta_1}{2g}](https://tex.z-dn.net/?f=h_1%3D%5Cfrac%7Bu_1%5E2sin%5E2%5Ctheta_1%7D%7B2g%7D)
=![\frac{u_1^2sin^230^{\circ}}{2g} \frac{u_1^2sin^230^{\circ}}{2g}](https://tex.z-dn.net/?f=%5Cfrac%7Bu_1%5E2sin%5E230%5E%7B%5Ccirc%7D%7D%7B2g%7D)
=
......(1)
![h_2=\frac{u_2^2sin^2\theta_2}{2g} h_2=\frac{u_2^2sin^2\theta_2}{2g}](https://tex.z-dn.net/?f=h_2%3D%5Cfrac%7Bu_2%5E2sin%5E2%5Ctheta_2%7D%7B2g%7D)
=![\frac{u_2^2sin^260^{\circ}}{2g} \frac{u_2^2sin^260^{\circ}}{2g}](https://tex.z-dn.net/?f=%5Cfrac%7Bu_2%5E2sin%5E260%5E%7B%5Ccirc%7D%7D%7B2g%7D)
=
as,![h_1=h_2 h_1=h_2](https://tex.z-dn.net/?f=h_1%3Dh_2)
![\frac{u_1^2}{8g}=\frac{3u_2^2}{8g} \frac{u_1^2}{8g}=\frac{3u_2^2}{8g}](https://tex.z-dn.net/?f=%5Cfrac%7Bu_1%5E2%7D%7B8g%7D%3D%5Cfrac%7B3u_2%5E2%7D%7B8g%7D)
![\frac{u_1}{u_2}=\frac{\sqrt{3}}{1} \frac{u_1}{u_2}=\frac{\sqrt{3}}{1}](https://tex.z-dn.net/?f=%5Cfrac%7Bu_1%7D%7Bu_2%7D%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B1%7D)
(b) attain the same range.
horizontal range ,![R=\frac{u^2sin2\theta}{g} R=\frac{u^2sin2\theta}{g}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7Bu%5E2sin2%5Ctheta%7D%7Bg%7D)
![u_1^2sin2\theta_1=u_2^2sin2\theta_2 u_1^2sin2\theta_1=u_2^2sin2\theta_2](https://tex.z-dn.net/?f=u_1%5E2sin2%5Ctheta_1%3Du_2%5E2sin2%5Ctheta_2)
![u_1^2sin2(30)=u^2sin2(60) u_1^2sin2(30)=u^2sin2(60)](https://tex.z-dn.net/?f=u_1%5E2sin2%2830%29%3Du%5E2sin2%2860%29)
![u_1^2\frac{\sqrt{3}}{2}=u_2^2\frac{\sqrt{3}}{2} u_1^2\frac{\sqrt{3}}{2}=u_2^2\frac{\sqrt{3}}{2}](https://tex.z-dn.net/?f=u_1%5E2%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%3Du_2%5E2%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D)
![u_1=u_2 u_1=u_2](https://tex.z-dn.net/?f=u_1%3Du_2)
![\frac{u_1}{u_2}=1 \frac{u_1}{u_2}=1](https://tex.z-dn.net/?f=%5Cfrac%7Bu_1%7D%7Bu_2%7D%3D1)
we know, maximum height ,
given,
=
=
=
=
as,
(b) attain the same range.
horizontal range ,
Similar questions