Physics, asked by Sunderamalolan, 10 months ago

Two balls are projected making angles of 30 and 45 respectively with the horizontal If both have same
velocity at the highest point of their path, then the ratio of their horizontal range is​

Answers

Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Range_{1}:Range_{2}=1:\sqrt{3}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies Angle \:  of \: projection(  \theta) = 30 \degree \\  \\ \tt:\implies Angle \:  of \: projection(  \theta_{o} ) = 45 \degree  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt: \implies Ratio \: of \: horizontal \: range =?

• According to given question :

 \tt \circ \: Let \: velocity \: be \:  u_{1} \: and \:  u_{2} \\  \\  \bold{At \:maximum\: height : } \\  \tt:  \implies  u_{1}cos \:  \theta =  u_{2}cos \:  \theta_{o} \\  \\ \tt:  \implies  \frac{ u_{1} }{ u_{2} }  =  \frac{cos \:  \theta_{o} }{cos \:  \theta}  \\  \\ \tt:  \implies  \frac{ u_{1} }{ u_{2} }  =  \frac{cos \: 45 \degree}{cos \: 30 \degree}  \\  \\ \tt:  \implies  \frac{ u_{1} }{ u_{2} }  =  \frac{  \frac{1}{\sqrt{2}}  }{ \frac{ \sqrt{3} }{2} }  \\  \\ \tt:  \implies  \frac{ u_{1} }{ u_{2} }  =  \frac{\sqrt{2}}{ \sqrt{3}}  \\  \\  \green{\tt:  \implies  u_{1}   = u_{2} \frac{\sqrt{2}}{\sqrt{3} }}

 \bold{For \: Range : } \\ \tt:  \implies  \frac{ Range_{1} }{ Range_{2} }  = \huge{\frac{  \frac{{ u_{1} }^{2} sin  \: 2 \: \theta}{g}}{ \frac{ { u_{2}}^{2} sin \:  2 \theta_{o}  }{g} } } \\  \\ \tt:  \implies  \frac{ Range_{1} }{ Range_{2} }  =  \huge{\frac{ u_{2}^{2}\times \frac{2}{3} \times  sin \:60 \degree }{ u_{2}^{2} \: sin \: 90 \degree}}  \\  \\ \tt:  \implies  \frac{ Range_{1} }{ Range_{2} }  =  \frac{ \frac{ \frac{2}{3}\times \sqrt{3} }{2}}{ \times 1 }  \\  \\ \tt:  \implies  \frac{ Range_{1} }{ Range_{2} }  = \frac{2\sqrt{3}}{2\times 3}  \\  \\  \green{\tt:  \implies  Range_{1} :  Range_{2}  =1:\sqrt{3}}

Similar questions