Physics, asked by amrhousewarming, 9 months ago

Two balls of masses 3m and m are separated by a distance l. Find the position of C.M from 3 m mass ?

Answers

Answered by meghutsav
3

Answer:

l/4

Explanation:

c.m=3m.0 +m.l/4m

c.m=l/4

Answered by monishashkl
0

Answer:

The position of the center of mass from the ball of mass 3m is \frac{l}{4}

Explanation:

Here we have been given two balls of masses 3m and m respectively.

They are separated by a distance of l.

We have to find the position of the center of mass from the given 3m mass.

Here we have,

Let the position of the center of mass from the 3m ball be y therefore the position of the center of mass from the other ball is (l - y)

Now we know that,

m_{1} = 3m

m_{1} = m

R_{1} = y

R_{2} = l - y

Now we have,

m_{1}R_{1}= m_{2}R_{2}

⇒ (3m) × y = m × (l-y)

⇒ 3my = lm - my

⇒ lm = 3my + my

⇒ lm = 4my

⇒ l = 4y

⇒ y = \frac{l}{4}

Therefore the position of the center of mass from the 3m mass ball is \frac{l}{4}

Similar questions