Physics, asked by flaviasaldanha, 11 months ago

Two billiard balls are moving on a table and the component velocities along the length and
breadth are 5,5 ms^-1 for one ball 2√3,2ms^-1 for the other ball the angle between the motion of balls
1) 30°
2) 60°
3)40°
4)15°​

Answers

Answered by sarthakshree7
16

Answer:

4)15° IS THE RIGHT ANSWER

Explanation:FOR THE FIRST BALL VX=1m/S AND VY=?3

?=60

FOR THE SECOND BALL,TAN?=V?Y/V?X=2/2=1

?=45°

 HENCE,THE ANGLE BETWEEN THE PATHOF TWO BALLS =60°-45°=15°

hope it will help you please mark me as brainlist

Answered by talasilavijaya
2

Answer:

The angle between the motion of balls is 15°.

Explanation:

Given the velocities of two balls: \vec v_1= 5\hat i+5\hat j ~ms^{-1}~   \mbox {and} ~\vec v_2= 2\sqrt{3} \hat i+2\hat j~ms^{-1}

The angle between two vectors is given by

cos\theta=\dfrac{\vec A.\vec B}{|\vec A||\vec B|}

Substituting the given values, we get

cos\theta=\dfrac{\vec v_1.\vec v_1}{|\vec v_1|.|\vec v_1|}

      =\dfrac{(5\hat i+5\hat j).(2\sqrt{3} \hat i+2\hat j)}{\sqrt{5^{2} +5^{2} }.\sqrt{(2\sqrt{3} )^{2} +2^{2} } }

      =\dfrac{5\hat i.2\sqrt{3} \hat i+5\hat j.2\hat j}{\sqrt{25 +25 }.\sqrt{12+4 } }

      =\dfrac{5.2\sqrt{3} +5.2}{5\sqrt{2}\times 4 }=\dfrac{5.2(\sqrt{3} +1)}{5\sqrt{2}\times 4 }

      =\dfrac{\sqrt{3} +1}{2\sqrt{2} }

As we know from the trigonometric ratios,

cos 15^o=cos (45^o - 30^o)

          = cos 45^o. 30^o + sin 45^o. sin 30^o

         =  \frac{1}{\sqrt{2} }  \frac{\sqrt{3} }{2 } + \frac{1}{\sqrt{2} } \frac{1}{2}

         = \frac{\sqrt{3}+1 }{2\sqrt{2}  }

Therefore, from the above result,

cos \theta=\dfrac{\sqrt{3} +1}{2\sqrt{2} } we get \theta = 15^{o}

Therefore, the angle between the motion of balls is 15°.

Similar questions