Physics, asked by PULVITZz, 1 month ago

Two blocks A and B each of mass 14 kg is connected by an inextensible string passing over a light frictionless pulley. Block A is free to slide on a surface inclined at an angle of 30 with the horizontal whereas block B hangs freely and moves downward with constant velocity. What is (i) the magnitude of frictional force and (ii) the coefficient of kinetic friction? g= 10m/s2.

Answers

Answered by anupamsgpgi
0

Answer:

℘ɧεŋσɱεŋศɭ

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}

❥Question᎓

\huge\tt\bold{\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3 \frac{1}{3} }

x−2

x−1

+

x−4

x−3

=3

3

1

\huge\tt\mathbb{\boxed{\overbrace{\underbrace{\blue{Answer < /p > < p > }}}}}

Answer</p><p>

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

⟹\bold{\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3 \frac{1}{3}}⟹

x−2

x−1

+

x−4

x−3

=3

3

1

⟹\bold{\frac{(x - 1)(x - 4) + (x - 2)(x - 3)}{(x - 2)(x - 4)} = \frac{10}{3}}⟹

(x−2)(x−4)

(x−1)(x−4)+(x−2)(x−3)

=

3

10

⟹\bold{\frac{ {x}^{2} - x - 4x + 4 + {x}^{2} - 2x - 3x + 6 }{ {x}^{2} - 2x - 4x + 8} = \frac{10}{3} }⟹

x

2

−2x−4x+8

x

2

−x−4x+4+x

2

−2x−3x+6

=

3

10

⟹\bold{\frac{2 {x}^{2} - 10x + 10}{ {x}^{2} - 6x + 8 } = \frac{10}{3}}⟹

x

2

−6x+8

2x

2

−10x+10

=

3

10

⟹\bold{6 {x}^{2} - 30x + 30 = 10 {x}^{2} - 60x + 80}⟹6x

2

−30x+30=10x

2

−60x+80

⟹\bold{4 {x}^{2} - 30x + 50 = 0}⟹4x

2

−30x+50=0

⟹\bold{2 {x}^{2} - 15x + 25 = 0}⟹2x

2

−15x+25=0

⟹\bold{2 {x}^{2} - 10x - 5x + 25 = 0}⟹2x

2

−10x−5x+25=0

⟹\bold{2x(x - 5) - 5(x - 5) = 0}⟹2x(x−5)−5(x−5)=0

⟹\bold{(x - 5)(2x - 5) = 0}⟹(x−5)(2x−5)=0

⟹\bold{x - 5 = 0 \: or \: 2x - 5 = 0}⟹x−5=0or2x−5=0

⟹\bold{x = 5 \: or \: x = \frac{5}{2}}⟹x=5orx=

2

5

\bold{∴5\: and\: 5/2 \:are \:two \:solutions \:of \:given\: equation}∴5and5/2aretwosolutionsofgivenequation

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by xXMsSuchana05Xx
0

Answer:

Your answer is in the pic...

⠀* ⠀⠀⠀.          . ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀✦⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☄️ ⠀ ⠀⠀⠀⠀⠀⠀.             .   ゚ .             .                ✦      ,       .

Attachments:
Similar questions