Two blocks A and B each of mass 14 kg is connected by an inextensible string passing over a light frictionless pulley. Block A is free to slide on a surface inclined at an angle of 30 with the horizontal whereas block B hangs freely and moves downward with constant velocity. What is (i) the magnitude of frictional force and (ii) the coefficient of kinetic friction? g= 10m/s2.
Answers
Answer:
℘ɧεŋσɱεŋศɭ
☘
\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}
❥Question᎓
\huge\tt\bold{\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3 \frac{1}{3} }
x−2
x−1
+
x−4
x−3
=3
3
1
\huge\tt\mathbb{\boxed{\overbrace{\underbrace{\blue{Answer < /p > < p > }}}}}
Answer</p><p>
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
⟹\bold{\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3 \frac{1}{3}}⟹
x−2
x−1
+
x−4
x−3
=3
3
1
⟹\bold{\frac{(x - 1)(x - 4) + (x - 2)(x - 3)}{(x - 2)(x - 4)} = \frac{10}{3}}⟹
(x−2)(x−4)
(x−1)(x−4)+(x−2)(x−3)
=
3
10
⟹\bold{\frac{ {x}^{2} - x - 4x + 4 + {x}^{2} - 2x - 3x + 6 }{ {x}^{2} - 2x - 4x + 8} = \frac{10}{3} }⟹
x
2
−2x−4x+8
x
2
−x−4x+4+x
2
−2x−3x+6
=
3
10
⟹\bold{\frac{2 {x}^{2} - 10x + 10}{ {x}^{2} - 6x + 8 } = \frac{10}{3}}⟹
x
2
−6x+8
2x
2
−10x+10
=
3
10
⟹\bold{6 {x}^{2} - 30x + 30 = 10 {x}^{2} - 60x + 80}⟹6x
2
−30x+30=10x
2
−60x+80
⟹\bold{4 {x}^{2} - 30x + 50 = 0}⟹4x
2
−30x+50=0
⟹\bold{2 {x}^{2} - 15x + 25 = 0}⟹2x
2
−15x+25=0
⟹\bold{2 {x}^{2} - 10x - 5x + 25 = 0}⟹2x
2
−10x−5x+25=0
⟹\bold{2x(x - 5) - 5(x - 5) = 0}⟹2x(x−5)−5(x−5)=0
⟹\bold{(x - 5)(2x - 5) = 0}⟹(x−5)(2x−5)=0
⟹\bold{x - 5 = 0 \: or \: 2x - 5 = 0}⟹x−5=0or2x−5=0
⟹\bold{x = 5 \: or \: x = \frac{5}{2}}⟹x=5orx=
2
5
\bold{∴5\: and\: 5/2 \:are \:two \:solutions \:of \:given\: equation}∴5and5/2aretwosolutionsofgivenequation
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ
Answer:
Your answer is in the pic...
⠀* ⠀⠀⠀. . ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀✦⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☄️ ⠀ ⠀⠀⠀⠀⠀⠀. . ゚ . . ✦ , .