Physics, asked by yoggeish, 8 months ago

Two bodies A and B are projected from the same place in same vertical plane with velocities v1 and v2 from a from a long inclined
plane as shown. The ratio of their time of flight is
A) v1 sin theta / v2
B) 2v1 sin theta / v2
C) v1 sin theta / 2v2
D) v1 cos theta / v2

Attachments:

Answers

Answered by BrainlyTornado
11

ANSWER:

Option A) is correct.

\sf \dfrac{T_1}{T_2}=\dfrac{v_1 \ sin\ \theta}{ v_{2} }

GIVEN:

  • Two bodies A and B are projected from the same vertical plane.

  • Their velocities are v₁ and v₂ respectively.

TO FIND:

  • The ratio of their time of flight(v₁ : v₂).

EXPLANATION:

 \sf Generally \  \ \boxed{ \bold { \large{ \gray{ T = \dfrac{2u \ sin \ \theta}{g}}}}}

But here due to inclination

\boxed{ \bold { \large{ \gray{ T = \dfrac{2u \ sin \ \alpha}{g  \ sin \ \beta}}}}}

 \sf \beta\leadsto Angle\ of\ inclination

\sf\alpha \leadsto Angle\ of \ projection

 \sf\mapsto T_1 = \dfrac{2 v_{1}  \ sin \ \alpha}{g  \ sin \ \beta}

\sf\mapsto Here \ \beta = \alpha = \theta

As the two angles are alternate angles.

 \sf\mapsto T_1 = \dfrac{2 v_{1}  \ sin \ \theta}{g  \ sin \ \theta}

 \sf\mapsto T_1 = \dfrac{2 v_{1}}{g}

 \sf\mapsto T_2 = \dfrac{2 v_{2}  \ sin \ \alpha}{g  \ sin \ \beta}

\sf\mapsto Here \  \beta = \theta\ and \ \alpha=90^{\circ}

 \sf\mapsto T_2= \dfrac{2 v_{2}  \ sin \ 90^{\circ}}{g  \ sin \ \theta}

 \sf \mapsto T_2= \dfrac{2 v_{2} }{g  \ sin \ \theta}

\sf\mapsto\dfrac{T_1}{T_2}=\dfrac{\dfrac{2 v_{1}}{g}}{\dfrac{2 v_{2} }{g  \ sin \ \theta}}

\sf\mapsto\dfrac{T_1}{T_2}=\dfrac{v_1}{\dfrac{ v_{2} }{  \ sin \ \theta}}

\sf \mapsto\dfrac{T_1}{T_2}=\dfrac{v_1 \ sin\ \theta}{ v_{2} }

\bf The\ ratio\ of\ time\ of\ flight= \dfrac{v_1 \ sin\ \theta}{ v_{2} }

Note : Refer Attachment For Diagram.

Attachments:
Similar questions