Physics, asked by jasslubana3329, 1 year ago

Two bodies have same velocities their kinetic energy are 30J and 250J find the ratio of their masses

Answers

Answered by lAravindReddyl
27

\boxed{\sf \green{Answer}}

ratio of masses = 3:25

\boxed{\sf \green{Explanation}}

Given:

  • velocities of two bodies are same

K.E. of

  • 1st body = 30J
  • 2nd body = 250J

To Find:

Ratio of the masses of the bodies

Solution:

w.k.t

\boxed{\bold \blue{K.E = \dfrac{1}{2}m{v}^{2}}}

 K.E_1= \dfrac{1}{2}m_1{v}^{2}

 30J = \dfrac{1}{2}m_1{v}^{2} -----(1)

Now,

 K.E_2= \dfrac{1}{2}m_2{v}^{2}

 250J= \dfrac{1}{2}m_2{v}^{2} ------(2)

Eq. (1)/(2)

 \dfrac{30J}{250J}= \dfrac{\dfrac{1}{2}m_1 {v}^{2}}{\dfrac{1}{2}m_2{v}^{2}}

 \dfrac{3\cancel{0J}}{25\cancel{0J}}= \dfrac{\cancel{\dfrac{1}{2}}m_1 \cancel{{v}^{2}}}{\cancel{\dfrac{1}{2}}m_2\cancel{{v}^{2}}}

 \dfrac{3}{25}= \dfrac{m_1 }{m_2}

  m_1 : m_2 = 3 : 25

\texttt{\blue{Aravind}\:\red{Reddy}....!}

Answered by Anonymous
21

★Given →

velocities of two bodies are same

velocities of two bodies are sameK.E. of

  • 1st body = 30J
  • 1st body = 30J2nd body = 250J

★To Find →

Ratio of the masses of the bodies

★Solution: →

\boxed{\bold \orange{K.E = \dfrac{1}{2}m{v}^{2}}}

K.E_1= \dfrac{1}{2}m_1{v}^{2}

30J = \dfrac{1}{2}m_1{v}^{2}

-----(1)

Now,

K.E_2= \dfrac{1}{2}m_2{v}^{2}

250J= \dfrac{1}{2}m_2{v}^{2}

------(2)

Eq. (1)/(2)

\dfrac{30J}{250J}= \dfrac{\dfrac{1}{2}m_1 {v}^{2}}{\dfrac{1}{2}m_2{v}^{2}}

\dfrac{3\cancel{0J}}{25\cancel{0J}}= \dfrac{\cancel{\dfrac{1}{2}}m_1 \cancel{{v}^{2}}}{\cancel{\dfrac{1}{2}}m_2\cancel{{v}^{2}}}

\dfrac{3}{25}= \dfrac{m_1 }{m_2}

Similar questions