Physics, asked by gadha9495, 5 months ago

Two bodies of different masses mi and m2 are
dropped simultaneously from height h, and h2 res-
pectively. The ratio of times taken by these is -
(A) VhVh2 (B) h : họ
(C) h12: h22
(D) m2 h:mh2​

Answers

Answered by Anonymous
40

Answer:

Option A is your answer _______________________________

 \huge{ \underline{ \large{ \rm{ \pink{Given:}}}}}

  • Two bodies of different masses m1 and m2
  • They dropped from height h1 and h2

 \huge{ \underline{ \rm{ \large{ \red{Find:}}}}}

  • Ratios of time taken??

 \huge{ \underline{ \rm{ \green{ \large{Solution:}}}}}

 \to{ \sf{M1 : h2 =  \frac{1}{2}  \times  \frac{p1}{m2} ({t1)}^{2} }}

 \to{ \sf{ M2:h2 =  \frac{1}{2} \times  \frac{p2}{m2} ({t2})^{2}   }}

Where P1 = m1g, P2 = m2g (weights)

So, let's divide the equations:-

{ \implies{ \sf{( \frac{h1}{h2} ) =  \frac{(m1 \times g \times m2)}{(m2 \times g \times m1)} \times  {( \frac{t1}{t2} )}^{2}  }}}

{ \implies{ \sf{( \frac{h1}{h2} ) =  { (\frac{t1}{t2}) }^{2} }}}

{ \implies{ \sf{ \frac{t1}{t2}  =  \sqrt{ (\frac{h1}{h2}) } }}}

 \:  \:

{ \therefore{ \pink{ \sf{ t_{1}: t_{2} =  \sqrt{ h_{1} }:  \sqrt{ h_{2}}  }}}}

Answered by amazingbuddy
4

\huge\tt{\green{Given : }}

  • Two bodies of different masses m1 and m2
  • They dropped from height h1 and h2

\huge\tt{\red{To \: Find : }}

  • Ratios of time taken.

\huge\tt {\orange{Solution:}}

:\implies{ \sf{M1 : h2 = \dfrac{1}{2} \times \dfrac{p1}{m2} ({t1)}^{2} }}

:\implies { \sf{ M2:h2 = \dfrac{1}{2} \times \dfrac{p2}{m2} ({t2})^{2} }}

On dividing the equations :

{: \implies{ \sf{( \dfrac{h1}{h2} ) = \dfrac{(m1 \times g \times m2)}{(m2 \times g \times m1)} \times {( \dfrac{t1}{t2} )}^{2} }}}

{ :\implies{ \sf{( \dfrac{h1}{h2} ) = { (\dfrac{t1}{t2}) }^{2} }}}

{ :\implies{ \sf{ \dfrac{t1}{t2} = \sqrt{ (\dfrac{h1}{h2}) } }}}

{ \therefore{\underline{\boxed{ \sf{ t_{1}: t_{2} = \sqrt{ h_{1} }: \sqrt{ h_{2}} }}}}}

________________________________________

Option A is the answer !

Similar questions