Physics, asked by prakashpriyesh12, 8 months ago

two bodies of equal masses move with uniform velocity v and 4 respectively find the ratio of their Kinetic energies​

Answers

Answered by BrainlyConqueror0901
8

CORRECT QUESTION :

Two bodies of equal masses move with uniform velocity v and 4v respectively. find the ratio of their Kinetic energies.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{K.E_{1}:K.E_{2}=1:16}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies  m_{1} =  m_{2} = m \\  \\ \tt: \implies Velocity( v_{1}) =v \\  \\ \tt: \implies Velocity( v_{2}) =4v \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Ratio \: of \: kinetic \: energy = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies  \frac{K.E_{1}}{K.E_{2}}  =  \frac{ \frac{1}{2} m_{1}{ v_{1}}^{2} }{\frac{1}{2} m_{2}{ v_{2}}^{2}}  \\  \\ \tt: \implies  \frac{K.E_{1}}{K.E_{2}}  =  \frac{2 m_{1} { v_{1}}^{2}  }{2 m_{2} v_{2}^{2} }  \\  \\ \tt \circ \:  m_{1} =  m_{2 } = m   \\  \\ \tt: \implies  \frac{K.E_{1}}{K.E_{2}}  =  \frac{m v_{1}^{2}  }{ mv_{2}^{2}  }  \\  \\ \tt: \implies  \frac{K.E_{1}}{K.E_{2}}  =   \frac{ {(v)}^{2} }{ {(4v)}^{2} } \\  \\ \tt: \implies  \frac{K.E_{1}}{K.E_{2}}  =  \frac{ {v}^{2} }{16  {v}^{2}  }  \\  \\ \tt: \implies  \frac{K.E_{1}}{K.E_{2}}  =   \frac{1}{16}  \\  \\  \green{\tt: \implies  K.E_{1} : K.E_{2}  = 1 : 16}

Similar questions