Math, asked by kritiyadavbtn, 11 months ago

Two bodies of masses 1 kg and 2 kg are lying in xy
plane at (-1, 2) and (2, 4) respectively. What are
coordinates of COM?​

Answers

Answered by asif03ansari11
0

Answer:

hope it will help

.

.

.

.

.please ket me know if it is correct.

.

Attachments:
Answered by Anonymous
5

SoluTion:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Let the coordinates of centre of mass be (x, y).

⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀

\sf{x_{CM} = \dfrac{m_{1} x_{1} + m_{2} x_{2}}{m_{1} + m_{2}}}

⠀⠀⠀⠀

Here,

  • \sf{m_{1} = 1\:kg}

  • \sf{x_{1} = -1}

  • \sf{m_{2} = 2\:kg}

  • \sf{x_{2} = 2}

⠀⠀⠀⠀

Putting the values,

⠀⠀⠀⠀

\longrightarrow \sf{x_{CM} = \dfrac{1 \times (-1) + 2 \times 2}{1+2}}

⠀⠀⠀⠀

\longrightarrow \sf{x_{CM} = \dfrac{-1+4}{3}}

⠀⠀⠀⠀

\longrightarrow \sf{x_{CM} = \dfrac{3}{3}}

⠀⠀⠀⠀

\longrightarrow \sf{x_{CM} = 1}

⠀⠀⠀⠀

Similarly,

⠀⠀⠀⠀

\sf{y_{CM} = \dfrac{m_{1} y_{1} + m_{2} y_{2}}{m_{1} + m_{2}}}

⠀⠀⠀⠀

Here,

⠀⠀⠀⠀

  • \sf{m_{1} = 1\:kg}

  • \sf{y_{1} = 2}

  • \sf{m_{2} = 2\:kg}

  • \sf{y_{2} = 4}

⠀⠀⠀⠀

†Putting the values,

⠀⠀⠀⠀

\longrightarrow \sf{y_{CM} = \dfrac{1 \times (2) + 2 \times 4}{1+2}}

⠀⠀⠀⠀

\longrightarrow \sf{y_{CM} = \dfrac{2+8}{3}}

⠀⠀⠀⠀

\longrightarrow \sf{y_{CM} = \dfrac{10}{3}}

⠀⠀⠀⠀

\therefore \sf{Coordinates\:of\:centre\:of\:mass\:will\:be\:\bigg( 1, \dfrac{10}{3} \bigg)}

Similar questions