Two bodies of masses m, and m, and specific heat
capacities s, and s, are connected by a rod of length I,
cross-sectional area A, thermal conductivity K and
negligible heat capacity. The whole system is thermally
insulated. At time t = 0, the temperature of the first body
is T, and the temperature of the second body is
T, (T,> T.). Find the temperature difference between the
two bodies at time t.
Answers
Answered by
2
Answer:
A::B::D
Explanation:
Solution :
`(Q/t)=(KA(T_1-T_2))/L`
`T_2=(KA(T_1-T_2))/(Lms)`
`Fall in temperature in T_1=(KA(T_1-T_2))/(Lm_1s_1)`
`Final temperature in T_1=T_1-=(KA(T_1-T_2))/(Lm_1 s_1)`
`Final temperature in `
` T_2=T_2+(KA(T_1-T_2))/(Lm_2 s_2)`
`Change in temperature `
` T_1-(KA(T_1-T_2))/(Lm_1 s_1)`
`=(T_2+(KA(T_1-T_2))/(Lm_2 s_2)`
`=(T_1-T_2)`
`-[(KA(T_1-T_2))/(Lm_1 s_1)+(KA(T_1-T_2))/(Lm_2 s_2)]`
`IndT=(KA)/(L)((M_2)(S_2) +(M_1)(S_1)/(M_1)(S_1)(M_2)(S_2))`
So difference in temperature `=(T_2-T_1)e^(-lambda t)`
`where (lambda)=(KA)/(l)((m_1)(s_1)+(m_2)(s_2))/((m_1)(s_1)(m_2)(s_2))`
Similar questions