Physics, asked by sheikhafsha04, 11 months ago


Two bodies of masses m, and m, and specific heat
capacities s, and s, are connected by a rod of length I,
cross-sectional area A, thermal conductivity K and
negligible heat capacity. The whole system is thermally
insulated. At time t = 0, the temperature of the first body
is T, and the temperature of the second body is
T, (T,> T.). Find the temperature difference between the
two bodies at time t.​

Answers

Answered by Anonymous
2

Answer:

A::B::D

Explanation:

Solution :

`(Q/t)=(KA(T_1-T_2))/L`

`T_2=(KA(T_1-T_2))/(Lms)`

`Fall in temperature in T_1=(KA(T_1-T_2))/(Lm_1s_1)`

`Final temperature in T_1=T_1-=(KA(T_1-T_2))/(Lm_1 s_1)`

`Final temperature in `

` T_2=T_2+(KA(T_1-T_2))/(Lm_2 s_2)`

`Change in temperature `

` T_1-(KA(T_1-T_2))/(Lm_1 s_1)`

`=(T_2+(KA(T_1-T_2))/(Lm_2 s_2)`

`=(T_1-T_2)`

`-[(KA(T_1-T_2))/(Lm_1 s_1)+(KA(T_1-T_2))/(Lm_2 s_2)]`

`IndT=(KA)/(L)((M_2)(S_2) +(M_1)(S_1)/(M_1)(S_1)(M_2)(S_2))`

So difference in temperature `=(T_2-T_1)e^(-lambda t)`

`where (lambda)=(KA)/(l)((m_1)(s_1)+(m_2)(s_2))/((m_1)(s_1)(m_2)(s_2))`

Similar questions