Physics, asked by bhagyeshkant3005, 1 year ago

Two bodies of masses m1 and m2 and specific heat capacities s1 and s2 are connected by a rod of length l, cross-sectional area A, thermal conductivity K and negligible heat capacity. The whole system is thermally insulated. At time t = 0, the temperature of the first body is T1 and the temperature of the second body is T2 (T2 > T1). Find the temperature difference between the two bodies at time t.

Answers

Answered by bhuvna789456
1

The temperature difference between the two bodies at time t is given by

d T=(T 2-T 1) e^{-\gamma t}

Explanation:

The temperature difference between the two bodies at time t:

Step 1:

Rate of transfer of heat from the rod is given by the following formula

        \frac{\Delta Q}{\Delta t}=\frac{K A(T 1-T 2)}{l}          -------> (1)

Where T1 and T2 are the temperature of the body

From eq 1 we can write            

      \Delta Q=\frac{K A(T 1-T 2) \Delta t}{l}    ---------->(2)

We know that Heat loss at T2 = Heat gain T1

Heat loss of body at T2 :

      \Delta Q=m 2 s 2\left(T 2-T^{\circ} 2\right) ----->(3)  

Step 2:    

Subsituting the values in equation  

m 2 s 2\left(T 2-T^{\circ} 2\right)=\frac{K A(T 1-T 2) \Delta t}{l}

T°2 is given by the following,

T^{\circ} 2=T 2-\frac{K A(T 1-T 2) \Delta t}{l}

Step 3:

Raise in temperature of water at T1  is given by,

m 1 s 1\left(T^{\circ} 1-T 1\right)=\frac{K A(T 1-T 2) \Delta t}{l}

T^{\circ} 1=T 1+\frac{K A(T 1-T 2) \Delta t}{l m 1 s 1}

T^{\circ} 2-T^{\circ} 1=T 2-T 1-\frac{K A(T 1-T 2) \Delta t}{l}-\frac{K A(T 1-T 2) \Delta t}{l m 1 s 1}

\left(T^{\circ} 2-T^{\circ} 1\right)-(T 2-T 1)=-\frac{K A(T 1-T 2) \Delta t}{l}\left[\frac{1}{m 2 s 2}-\frac{1}{m 1 s 1}\right]                ( \Delta t=0)

\frac{\Delta T}{\Delta t}=\frac{-K A}{l} \frac{m 1 s 1-m 2 s 2}{m 1 m 2 s 1 s 2}(T 1-T 2)

\frac{d T}{T 1-T 2}=\frac{-K A}{l} \frac{m 1 s 1-m 2 s 2}{m 1 m 2 s 1 s 2} d t

\ln (T 1-T 2)=\frac{-K A}{l} \frac{m 1 s 1-m 2 s 2}{m 1 m 2 s 1 s 2} t+C                                    ( \Delta t=T 2-T 1 )      

\ln (T 2-T 1)=C

\ln d T=\frac{-K A}{l} \frac{m 1 s 1-m 2 s 2}{m 1 m 2 s 1 s 2}+\ln (T 2-T 1)

\ln \frac{d T}{\tau_{1-T 2}}=-\gamma t                                            where \gamma=\frac{K A}{l} \frac{m 1 s 1-m 2 s 2}{m 1 m 2 s 1 s 2}

d T=(T 2-T 1) e^{-\gamma t}          

Thus the temperature difference between the bodies is given by  d T=(T 2-T 1) e^{-\gamma t}                              

Answered by Anonymous
5

\huge{\boxed{\mathcal\pink{\fcolorbox{red}{white}{Answer}}}}

check out the above mentioned

Attachments:
Similar questions