Physics, asked by kaushikabhi, 1 year ago

Two bodies of masses m1 and m2 have the same linear momentum. What is the ratio of their kinetic energies?


Anonymous: momentum = p = mvK = 1/2 mv^2

but p = mv so K = 1/2 p v = 1/2 p^2/m

Then K1/K2 = (p^2/m1)/(p^2/m2) = m2/m1

Answers

Answered by TPS
16
m1v1 = m2v2 = p
⇒v1 = p/m1     and     v2 =p/m2

Ratio of KE =  \frac{0.5*m1*(v1)^{2} }{0.5*m2* (v2)^{2} }
                    
                    = \frac{m1*(v1)^{2} }{m2* (v2)^{2} }

                    = \frac{m1*(p/m1)^{2} }{m2* (p/m2)^{2} }
                 
                     =  \frac{ \frac{ p^{2} }{m1} }{ \frac{ p^{2} }{m2} }

                     = \frac{m2}{m1}

Answered by kvnmurty
11
p_1 = momentum\ of\ m_1 = m_1\ v_1\\ p_2 = momentum\ of\ v_2=m_1\ v_2 = p_1 = m_1\ v_1\\ \\Kinetic\ energy=\frac{p^2}{2m}\\ \\Ratio\ of\ Kinetic\ Energies = KE_1 : KE_2 = \frac{p_1^2}{2m_1} : \frac{p_2^2}{2m_2} \\ \\= 1/m_1 : 1/m_2\ as\ p_1=p_2 \\ \\Multiply\ with\ m_1m_2,\\ \\m_2 : m_1\ \ \ or\ \ m_2/m_1\\
Similar questions