Physics, asked by MrBrainlyBrilliant, 3 months ago

Two bulbs R and S are marked 60W, 220V and 60W, 110V respectively. Find out the
ratio of their resistances

❌No spam ❌
Content quality answer needed​


MrBrainlyBrilliant: Please give correct answer

Answers

Answered by IdyllicAurora
10

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the concept of Power and Resistance relationship has been used. We see that we are given the Power and Potential Difference of two bulbs. The question is that that what will be the ratio of their resistances. We can calculate it by calculating the resistances of each bulb and then taking their ratio.

Let's do it !!

_____________________________________________

Formula Used

\\\;\boxed{\sf{\pink{Power\;=\;\bf{\dfrac{V^{2}}{R}}}}}

_____________________________________________

Solution :-

Given,

» Power of bulb R = P₁ = 60 W

» Potential Difference of bulb R = V₁ = 220 V

» Power of bulb S = P₂ = 60 W

» Potential Difference of bulb S = V₂ = 110 V

  • Let the Resistance of bulb R be R₁

  • Let the Resistance of bulb S be R₂

_____________________________________________

~ For the Resistance of bulb R ::

By Power - Resistance relationship, we know that

\\\;\sf{\rightarrow\;\;Power\;=\;\bf{\dfrac{V^{2}}{R}}}

  • Here V is the Potential Difference and R is the resistance.

By applying values we get,

\\\;\sf{\rightarrow\;\;P_{1}\;=\;\bf{\dfrac{V_{1} ^{2}}{R_{1}}}}

\\\;\sf{\Longrightarrow\;\;R_{1}\;=\;\bf{\dfrac{V_{1} ^{2}}{P_{1}}}}

\\\;\sf{\Longrightarrow\;\;R_{1}\;=\;\bf{\dfrac{(220)^{2}}{60}}}

\\\;\bf{\Longrightarrow\;\;R_{1}\;=\;\bf{\green{\dfrac{220\:\times\:220}{60}\;\Omega}}}

_____________________________________________

~ For the Resistance of bulb S ::

By Power - Resistance relationship, we know that

\\\;\sf{\rightarrow\;\;Power\;=\;\bf{\dfrac{V^{2}}{R}}}

  • Here V is the Potential Difference and R is the resistance.

By applying values, we get

\\\;\sf{\rightarrow\;\;P_{2}\;=\;\bf{\dfrac{V_{2} ^{2}}{R_{2}}}}

\\\;\sf{\Longrightarrow\;\;R_{2}\;=\;\bf{\dfrac{V_{2} ^{2}}{P_{1}}}}

\\\;\sf{\Longrightarrow\;\;R_{2}\;=\;\bf{\dfrac{(110)^{2}}{60}}}

\\\;\bf{\Longrightarrow\;\;R_{2}\;=\;\bf{\orange{\dfrac{110\:\times\:110}{60}\;\Omega}}}

_____________________________________________

~ For the Ratio of Resistances ::

This is given as,

\\\;\bf{\mapsto\;\;\red{Ratio\;of\;Resistances}\;=\;\bf{\dfrac{\green{R_{1}}}{\orange{R_{2}}}}}

By applying values, we get

\\\;\sf{\mapsto\;\;\dfrac{R_{1}}{R_{2}}\;=\;\bf{\dfrac{\bigg(\dfrac{220\:\times\:220}{60}\bigg)}{\bigg(\dfrac{110\:\times\:110}{60}\bigg)}}}

Cancelling the denominators, we get

\\\;\sf{\mapsto\;\;\dfrac{R_{1}}{R_{2}}\;=\;\bf{\dfrac{220\:\times\:220}{110\:\times\:110}}}

\\\;\sf{\mapsto\;\;\dfrac{R_{1}}{R_{2}}\;=\;\bf{\dfrac{2\:\times\:2}{1\:\times\:1}}}

\\\;\bf{\mapsto\;\;\dfrac{R_{1}}{R_{2}}\;=\;\bf{\blue{\dfrac{4}{1}}}}

In the ratio form, this can be written as

\\\;\bf{\blue{\mapsto\;\;R_{1}\;:\;R_{2}\;=\;\bf{4\;:\;1}}}

\\\;\underline{\boxed{\tt{Ratio\;\:of\;\:Resistances\;=\;\bf{\purple{4\;:\;1}}}}}

_____________________________________________

More to know :-

\\\;\sf{\leadsto\;\;I\;=\;\dfrac{Q}{T}}

\\\;\sf{\leadsto\;\;V\;=\;\dfrac{W}{Q}}

\\\;\sf{\leadsto\;\;P\;=\;V\;\times\;I}

\\\;\sf{\leadsto\;\;H\;=\;P\:\times\:T}

\\\;\sf{\leadsto\;\;H\;=\;I^{2}\:\times\:R\:\times\:T}


MrBrainlyBrilliant: nice explanation! once check the answer. I think it will be 2:1
IdyllicAurora: Its correct mate...
MrBrainlyBrilliant: ok! anyways superb explanation :)
amansharma264: good
IdyllicAurora: Thanks :)
assingh: Marvellous answer!
IdyllicAurora: Thanks :)
IdyllicAurora: Thanks :)
Answered by BlossomingBud123
3

Answer:

Refer to the attachment mate..

Hope it would help you..

Attachments:
Similar questions