Physics, asked by mariazomuanpuii78, 1 month ago

Two bulbs rate 200W at 220V and 400W at 220V are connected in parallel to a 220V line. What total current is drawn by them​

Answers

Answered by SparklingBoy
74

Given :-

  • Power of 1st Bulb = P₁ = 200 W

  • Power of 2nd Bulb = P₂ =400 W

  • Potential Diff. = V = 220V

To Find :-

  • The Total Current Drawn By the Bulbs .

Solution :-

We Know,

  •  \large \boxed{\red{ \boxed{\bf P=\dfrac{V^2}{R}}}}

⭐ Using above formula we have to calculate Resistance of Both Bulbs.

Calculating Resistance of 1st Bulb :

For First Bulb :

200 =  \dfrac{220 {}^{2} }{R_1}  \\

:\longmapsto R_1=  \dfrac{48400}{200}  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf R_1 = 242 Ω} }}}

Calculating Resistance of 2nd Bulb :

For 2nd Bulb :

400 =  \dfrac{ {220}^{2} }{R_2}  \\

:\longmapsto R_2 =  \frac{48400}{400}  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf R_2 =121 Ω} }}}

Calculating Net Resistance :

As Both bulbs are in parallel :

\bf\dfrac{1}{R_{net}}  =  \frac{1}{R_{1}}  +  \frac{1}{R_{2}}  \\

 :\longmapsto\sf\dfrac{1}{R_{net}} =  \frac{1}{242}  +  \frac{1}{221}  \\

:\longmapsto \sf\dfrac{1}{R_{net}} =  \frac{1 + 2}{242}  \\

 :\longmapsto\sf\dfrac{1}{R_{net}} =  \frac{3}{242}  \\

\pink{ \large :\longmapsto  \underline {\boxed{{\bf R_{net} = \frac{242}{3} Ω} }}} \\

Now,

Using Ohm's Law :

 :\longmapsto\bf V=IR

:\longmapsto220 =  \text I  \times  \frac{242}{3}  \\

:\longmapsto \text I = \dfrac{220 \times 3}{242}  \\

\pink{ \large :\longmapsto  \underline {\boxed{\bf I= 2.72 \: A}}} \\

Answered by NewGeneEinstein
62
  • Power of first bulb=P1=200W
  • Power of second bulb=P2=400W
  • Potential difference of each bulb=220V

Let

  • Resistances of two bulbs be R1 and R2 respectively

We know

\boxed{\sf P=\dfrac{V^2}{R}}

\\ \sf\longmapsto R_1=\dfrac{V^2}{P_1}

\\ \sf\longmapsto R_1=\dfrac{220^2}{200}

\\ \sf\longmapsto R_1=\dfrac{48400}{200}

\\ \bf\longmapsto R_1=242\Omega

And

\\ \sf\longmapsto R_2=\dfrac{V^2}{P_2}

\\ \sf\longmapsto R_2=\dfrac{220^2}{400}

\\ \sf\longmapsto R_2=\dfrac{48400}{400}

\\ \sf\longmapsto R_2=121\Omega

Both are connected in parallel

\boxed{\sf \dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}}

\\ \sf\longmapsto \dfrac{1}{R_{eq}}=\dfrac{1}{242}+\dfrac{1}{121}

\\ \sf\longmapsto \dfrac{1}{R_{eq}}=\dfrac{1+2}{242}

\\ \sf\longmapsto \dfrac{1}{R_{eq}}=\dfrac{3}{242}

\\ \sf\longmapsto R_{eq}=\dfrac{242}{3}\Omega

  • Current=I

Using ohms law

\boxed{\sf \dfrac{V}{I}=R}

\\ \sf\longmapsto I=\dfrac{V}{R}

\\ \sf\longmapsto I=\dfrac{220}{\dfrac{242}{3}}

\\ \sf\longmapsto I=\dfrac{220\times 3}{242}

\\ \sf\longmapsto I=\dfrac{660}{242}

\\ \sf\longmapsto I=2.72A

Similar questions