Physics, asked by nagarajaudp, 5 months ago

Two capacitors of 3 uF and 5 uF are in series across a 10 V source. Find the charge on these
capacitors and the potential difference across each. (ANS: Charge on the capacitors,
Q = 18.75x10-6 C, Potential difference across each, V1 = 6.25 V, V2 = 3.75 V)​

Answers

Answered by Anonymous
7

\huge{\mathbb{\red{ANSWER:-}}}

Given :-

\sf{C1 = 3 \: uF}

\sf{C2 = 5 \: uF}

\sf{V = 10 \: volt}

Solution :-

Firstly ,

\sf{When \: , 3 \: uF \: and \: 5 \: uF \: are \: in \: series-}

\sf{Total \: capicity-}

\sf{\dfrac{1}{Cs} =\dfrac{1}{C1} + \dfrac{1}{C2}}

\sf{Cs =\dfrac{C1\times C2}{C1 + C2}}

\sf{Cs =\dfrac{3\times 5}{(3 + 5)}}

\sf{Cs =\dfrac{15}{8} \: uF}

We know that -

\sf{Cs = \dfrac{Q}{V}}

\sf{Q = Cs\times V}

\sf{Q = \dfrac{15}{8}\times 10}

\sf{Q =\dfrac{15}{4}\times 5}

\sf{Q =\dfrac{75}{4}}

\sf{Q = 18.75 \: uC}

\sf{\sf\boxed{Q = 18.75\times 10^{-6} \: C}}

Now ,

\sf{Potential \: difference \: through \: 3 \: uF -}

\sf{V1 =\dfrac{Q}{C1} =\dfrac{18.75 \: uC}{3 \: uF}= 6.25 \: volt}

Then ,

\sf{Potential \: difference \: through \: 5 \: uF -}

\sf{V2 =\dfrac{Q}{C2} =\dfrac{18.75 \: uC}{5 \: uF}= 3.75 \: volt}

Similar questions