Physics, asked by Mousaeed3351, 8 months ago

Two carnot engines a and b have their sources at 327 and 227 and sinks at 127 and 27 ratio of efficiency of a to that of b

Answers

Answered by Anonymous
17

Given:

For Carnot engine A:

Temperature of source  \rm ({T_1}_{A}) = 327 K

Temperature of sink  \rm ({T_2}_{A}) = 127 K

For Carnot engine B:

Temperature of source  \rm ({T_1}_{B}) = 227 K

Temperature of sink  \rm ({T_2}_{B}) = 27 K

To Find:

Ratio of efficiency of A to that of B  \rm \eta_A : \eta_B

Answer:

Efficiency of Carnot engine:

 \boxed{ \bf{\eta = 1 - \dfrac{T_2}{T_1}}}

So,

 \rm \implies \dfrac{\eta_A}{\eta_B} =  \dfrac{1 - \dfrac{{T_2}_{A}}{{T_1}_{A}}}{1 - \dfrac{{T_2}_{B}}{{T_1}_{B}}}  \\  \\  \rm \implies \dfrac{\eta_A}{\eta_B} =  \dfrac{1 - \dfrac{127}{327}}{1 - \dfrac{27}{227}}  \\  \\  \rm \implies \dfrac{\eta_A}{\eta_B} =  \dfrac{ \dfrac{327 - 127}{327}}{ \dfrac{227 - 27}{227}}  \\  \\ \rm \implies \dfrac{\eta_A}{\eta_B} =  \dfrac{ \dfrac{ \cancel{200}}{327}}{ \dfrac{ \cancel{200}}{227}}  \\  \\ \rm \implies \dfrac{\eta_A}{\eta_B} =  \dfrac{ \dfrac{1}{327}}{ \dfrac{1}{227}}  \\  \\ \rm \implies \dfrac{\eta_A}{\eta_B} =  \dfrac{ 227}{ 327} \\  \\ \rm \implies \eta_A : \eta_B = 227 : 327

 \therefore  \boxed{\mathfrak{Ratio \ of \ efficiency \ of \ A \ to \ that \ of \ B \ (\eta_A : \eta_B) = 227 : 327}}

Answered by DARLO20
49

GIVEN :-

  • Tᴡᴏ ᴄᴀʀɴᴏᴛ ᴇɴɢɪɴᴇs \bf\red{a} ᴀɴᴅ \bf\red{b} ʜᴀᴠᴇ ᴛʜᴇɪʀ sᴏᴜʀᴄᴇs ᴀᴛ \bf\red{327\:K} ᴀɴᴅ \bf\red{227\:K} ᴀɴᴅ sɪɴᴋs ᴀᴛ \bf\red{127\:K} ᴀɴᴅ \bf\red{27\:K} .

TO FIND :-

  • Rᴀᴛɪᴏ ᴏғ ᴇғғɪᴄɪᴇɴᴄʏ ᴏғ \bf\red{a} ᴛᴏ ᴛʜᴀᴛ ᴏғ \bf\red{b} .

SOLUTION :-

ᴡᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

\red\checkmark\:\bf\purple{Efficiency\:of\:Carnot\:engine\:(\eta)\:=\:1\:-\:\dfrac{T_2}{T_1}\:}

Fʀ ʀɴ ɴɢɪɴ "a" :-

\huge\blue\star \bf\orange{\eta_{a}\:=\:1\:-\:\dfrac{T_2}{T_1}\:}

ᴡʜᴇʀᴇ,

  • \bf\pink{T_2} = 127 K

  • \bf\pink{T_1} = 327 K

\bf{:\implies\:\eta_{a}\:=\:1\:-\:\dfrac{127}{327}\:}

\rm{:\implies\:\eta_{a}\:=\:\dfrac{327\:-\:127}{327}\:}

\bf\red{:\implies\:\eta_{a}\:=\:\dfrac{200}{327}\:}

Fᴏʀ ᴄᴀʀɴᴏᴛ ᴇɴɢɪɴᴇ "b" :-

\huge\pink\star \bf\green{\eta_{b}\:=\:1\:-\:\dfrac{T_2}{T_1}\:}

ᴡʜᴇʀᴇ,

  • \bf\pink{T_2} = 27 K

  • \bf\pink{T_1} = 227 K

\bf{:\implies\:\eta_{b}\:=\:1\:-\:\dfrac{27}{227}\:}

\rm{:\implies\:\eta_{b}\:=\:\dfrac{227\:-\:27}{227}\:}

\bf\red{:\implies\:\eta_{b}\:=\:\dfrac{200}{227}\:}

Nᴏᴡ,

\bf{:\implies\:\dfrac{\eta_{a}}{\eta_{b}}\:=\:\dfrac{200/327}{200/227}\:}

\rm{:\implies\:\:\dfrac{\eta_{a}}{\eta_{b}}\:=\:\dfrac{\cancel{200}}{327}\:\times{\dfrac{227}{\cancel{200}}}\:}

\bf{:\implies\:\dfrac{\eta_{a}}{\eta_{b}}\:=\:\dfrac{227}{327}\:}

\bf\blue{:\implies\:\eta_{a}\::\:\eta_{b}\:=\:227\::327\:}

\huge\red\therefore Rᴀᴛɪᴏ ᴏғ ᴇғғɪᴄɪᴇɴᴄʏ ᴏғ \bf\red{a} ᴛᴏ ᴛʜᴀᴛ ᴏғ \bf\red{b} ɪs "227 : 327" .

Similar questions