Physics, asked by neha15022004, 11 months ago

Two charged boxes are 4m apart from each other the blue box has a charge of 0.000337 and is attracting the red box with a force of 626N determine charge of the red box

Answers

Answered by Anonymous
29

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\large \sf Given \begin{cases} \tt{Distance \: (d) \: = \: 4 \: m} \\ \tt{Q_1 \: = \: 0.000337 \: C} \\ \tt{Force \: (F) \: = \: 626 \: N} \\ \tt{Q_2 \: = \: ?}\end{cases}

_________________________

Solution :

\sf{Q_1 \: = \: 0.000337 \: = \: 337 \: \times \: 10^{-6} \: C}

Now, use Coloumb's Law :

\huge{\boxed{\boxed{\rm{\blue{F \: = \: k \dfrac{Q_1 Q_2}{d^2}}}}}} \\ \\ \implies {\sf{Q_2 \: = \: \dfrac{F \: \times \: d^2}{Q_1 \: \times \: k}}} \\ \\ \implies {\sf{Q_2 \: = \: \dfrac{626 \: \times \: 4^2}{337 \: \times \: 10^{-6} \: \times \: 9 \: \times \: 10^{9}}}} \\ \\ \implies {\sf{Q_2 \: = \: \dfrac{626 \: \times \: 16}{337 \: \times \: 10^{-6} \: \times \: 9 \: \times \: 10^9}}} \\ \\ \implies {\sf{Q_2 \: = \: \dfrac{10016}{3033 \: \times \: 10^{3}}}} \\ \\ \implies {\sf{Q_2 \: = \: \dfrac{3.3}{10^{3}}}} \\ \\ \implies {\sf{Q_2 \: = \: 3.3 \: \times \: 10^{-3}}} \\ \\ {\underline{\sf{\therefore \: \: Charge \: of \: Red \: box \: is \: 3.3 \: \times \: 10^{-3} \: C}}}

Answered by nirman95
91

Answer:

Given:

Charge of blue box = 0.000337 C

Net Force = 626 N

Distance = 4 metres.

To find:

Charge on red box.

Concept:

Simple apply Coloumb's Law of Electrostatic Force :

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{ \red{ Force =  \dfrac{1}{4\pi \epsilon_{o}} ( \dfrac{q_{1}q_{1}}{ {r}^{2} } ) }}

Calculation:

Predetermined Value of :

 \:  \:  \:  \:  \:  \:  \:  \boxed{ \blue {\dfrac{1}{4\pi \epsilon_{o}}    \approx \: 9 \times  {10}^{9} n {m}^{2} {c}^{ - 2}}}

Let the charge of red box be q red.

Now putting all the available values given in the question :

    \rightarrow626 = 9 \times  {10}^{9}  \times ( \frac{3.37 \times  {10}^{ - 4}  \times q_{red}}{ {4}^{2} })

 \rightarrow q_{red} =  \dfrac{626 \times 16}{9 \times  {10}^{9} \times 3.37 \times  {10}^{ - 4}  }

 \rightarrow q_{red} \: = \: 330.23  \times  {10}^{ - 5}C

So final answer :

  \boxed{ \red{ \sf{ q_{red} \: = \: 330.23  \times  {10}^{ - 5}C }}}

Similar questions