Two charges 3 × 10–8 C and –2 × 10–8 C are located 15 cm apart. At what point on the line
joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
Answers
Explanation:
Given :-
Object distance (u)= -50cm
Radius (R)= -60cm [•°• Concave mirror]
focal length (f)= R/2= -60/2= (-30)cm
Size of object = 15cm
To Find :-
We have to find the size of image
Solution :-
Using mirror formula
\underline{\boxed{\it\ \dfrac{1}{f}= \dfrac{1}{v}+\dfrac{1}{u}}}
f
1
=
v
1
+
u
1
Now , by putting these values in the formula
\begin{gathered}\longrightarrow\sf\ \dfrac{1}{-30}= \dfrac{1}{-50}+\dfrac{1}{v}\\ \\ \\ \longrightarrow\sf\ \dfrac{-1}{30}+\dfrac{1}{50}=\dfrac{1}{v}\\ \\ \\ \longrightarrow\sf\ \dfrac{-5+3}{150}=\dfrac{1}{v}\\ \\ \\ \longrightarrow\sf\ \dfrac{-2}{150}=\dfrac{1}{v}\\ \\ \\ \longrightarrow\sf\ v= \cancel{\dfrac{-150}{2}}\\ \\ \\ \longrightarrow\purple{\sf v= (-75)cm}\end{gathered}
⟶
−30
1
=
−50
1
+
v
1
⟶
30
−1
+
50
1
=
v
1
⟶
150
−5+3
=
v
1
⟶
150
−2
=
v
1
⟶ v=
2
−150
⟶v=(−75)cm
Now we have to find the size of image
By using magnification formula
\underline{\boxed{\sf\ m= \dfrac{-v}{u}= \dfrac{h_i}{h_o}}}
m=
u
−v
=
h
o
h
i
\begin{gathered}\longrightarrow\sf\ \dfrac{h_i}{15}=\dfrac{\not{-}(-75)}{\not{-}50}\\ \\ \\ \longrightarrow\sf\ \dfrac{h_i}{15}=\dfrac{-(75)}{50}\\ \\ \\ \longrightarrow\sf\ \ h_i= \dfrac{-(\cancel{75}\times 15)}{\cancel{50}}\\ \\ \\ \longrightarrow\sf\ \ h_i= \dfrac{-3\times 15}{2}\\ \\ \\ \longrightarrow\sf\ \ h_i= \cancel{\dfrac{-45}{2}}\\ \\ \\ \longrightarrow\sf\ \ h_i= (-22.5)\end{gathered}
⟶
15
h
i
=
−50
−(−75)
⟶
15
h
i
=
50
−(75)
⟶ h
i
=
50
−(
75
×15)
⟶ h
i
=
2
−3×15
⟶ h
i
=
2
−45
⟶ h
i
=(−22.5)
\underline{\bigstar{\textsf{\textbf{\ Size\ of\ image = (-22.5)cm}}}}
★ Size of image = (-22.5)cm
- Distance(d) = 15 cm = 0.15m
- Position where the electric potential is 0.
Let C be the point from 'x cm' to the right of charge q(1) where electric potential is zero. (as shown in the fig.)
According to Question,
When, Electric Potential is zero,
On putting the values,
On Cross Multiplication we get,
Thus, the Electric Potential is zero at 10 cm at right side of charge q(1) or (15-10) 5 cm at left side of charge q(2).
HOPE IT HELPS
PLEASE MARK ME BRAINLIEST ☺️