Math, asked by sst01, 8 months ago

two charges 5×10^(-8) C and -3×10^(-8) are located 16cm apart. at what points on the line joining the two charges is the electric potential zero ? take the potential at infinity to be zero.​ķ​

Answers

Answered by WorstAngeI
5

  \sf \:  {\blue{ \underline{ \underline{ANSWER }}}}

Given :

\sf \: q_1 \:  =  \: 5 \times  {10}^ {- 8}

\sf \: q_2 =  - 3 \times  {10}^{ - 8}

Distance(d) = 16cm = 0.16m

To Find :

Position where the electric potential is 0.

Solution :

 \setlength{\unitlength}{1cm}\thicklines\begin{picture}(10,6)\put(1,1){\vector(-1,0){3}} \put(1,1){\vector(1,0){3}}\put(-1.5,1){\circle*{0.1}}\put(1.5,1){\circle*{0.1}}\put(3.5,1){\circle*{0.1}}\put(-1.5,2){\line(0,1){0.3}}\put(-1.5,2.15){\line(1,0){3}}\put(1.5,2){\line(0,1){0.3}}\put(-1.5,-0.5){\line(0,1){0.3}}\put(-1.5,-0.35){\line(1,0){5}}\put(3.5,-0.5){\line(0,1){0.3}}\put(-1.6,0.5){\sf A}\put(1.35,0.5){\sf B}\put(3.4,0.5){\sf C}\put(-0.2,1.7){\sf x\;cm}\put(0.2,0){\sf d = 16\;cm}\put(-1.6,1.4){$\sf q_1$}\put(3.4,1.4){$\sf q_2$}\end{picture}

● Let C be the point from 'x cm' to the right of charge q(1) where electric potential is zero. (as shown in the fig.)

According to Question,

 \boxed{ \sf \: V =   \:  \frac{kq_1}{r_1}  +  \frac{kq_2}{r_2} }

 \implies \: \sf \: V =   \:  \frac{kq_1}{x}  +  \frac{kq_2}{(d - x)}

When, Electric Potential is zero.

 \implies \: \sf \: 0 =   \:  \frac{kq_1}{x}  +  \frac{kq_2}{(d - x)}

 \implies \: \sf   \:  \frac{kq_1}{x}   =  -  \frac{kq_2}{(d - x)}

 \implies \: \sf   \:  \frac{ \cancel{k}q_1}{x}   =  -  \frac{ \cancel{k}q_2}{(d - x)}

 \implies \: \sf   \:  \frac{q_1}{x}   =  -  \frac{q_2}{(d - x)}

On putting the values,

 \implies \: \sf   \:  \frac{5 \times  {10}^{ - 8} }{x}   =   \frac{ - ( - 3 \times  {10}^{- 8})}{0.16 \: - \:  x}

\implies \: \sf   \:  \frac{5 \times   \cancel{{10}^{- 8}}}{x}   =   \frac{ 3 \times \cancel{{10}^{- 8}}}{0.16 \: -  \: x}

On Cross Multiplication, we get

 \implies  \sf \: \: 3x =  \: 0.80 \:  -  \: 5x

\implies  \sf \: \: 8x =  \: 0.80

 \implies \: \sf x \:  =  0.10 \:

 \boxed{ \sf \:  \therefore \: x =0 .10 \: m \: or \: 10 \: cm}

Thus, the Electric Potential is zero at 10cm at right side of charge q(1) or (16 - 10) = 6cm at left side of charge q(2).

Answered by Anonymous
26

Answer:

\sf{q_{1} = 5 \times 10^{-8}}

\sf{q_{2} = -3 \times 10^{-8}} \\ \\

\implies\sf{ \frac{5 \times 10^{-8}}{x} = \frac{ -(-3 \times 10^{-8}}{0.16 -x} }

\longrightarrow\sf{ \frac{5 \times \cancel{10^{-8}}}{x} = \frac{ -(-3 \times \cancel{10^{-8}}}{0.16 -x} }

\implies\sf{ 3x = 0.80 - 5x}

\implies\sf{ 3x + 5x = 0.80}

\implies\sf{ 8x = 0.80}

\implies\bf\green{\fbox{ x = 0.10}}

Hope it will be helpful ✌️

Similar questions