Math, asked by 009son, 3 months ago

two charges 5×10^(-8) C and -3×10^(-8) are located 16cm apart. at what points on the line joining the two charges is the electric potential zero ? take the potential at infinity to be zero.​

Answers

Answered by Anonymous
16

Step-by-step explanation:

Answer:

  \sf \:  {\blue{ \underline{ \underline{ANSWER }}}}

Given :

\sf \: q_1 \:  =  \: 5 \times  {10}^ {- 8}

\sf \: q_2 =  - 3 \times  {10}^{ - 8}

Distance(d) = 16cm = 0.16m

To Find :

Position where the electric potential is 0.

Solution :

When, Electric Potential is zero.

 \implies \: \sf \: 0 =   \:  \frac{kq_1}{x}  +  \frac{kq_2}{(d - x)}

 \implies \: \sf   \:  \frac{kq_1}{x}   =  -  \frac{kq_2}{(d - x)}

 \implies \: \sf   \:  \frac{ \cancel{k}q_1}{x}   =  -  \frac{ \cancel{k}q_2}{(d - x)}

 \implies \: \sf   \:  \frac{q_1}{x}   =  -  \frac{q_2}{(d - x)}

On putting the values,

 \implies \: \sf   \:  \frac{5 \times  {10}^{ - 8} }{x}   =   \frac{ - ( - 3 \times  {10}^{- 8})}{0.16 \: - \:  x}

\implies \: \sf   \:  \frac{5 \times   \cancel{{10}^{- 8}}}{x}   =   \frac{ 3 \times \cancel{{10}^{- 8}}}{0.16 \: -  \: x}

On Cross Multiplication, we get

 \implies  \sf \: \: 3x =  \: 0.80 \:  -  \: 5x

\implies  \sf \: \: 8x =  \: 0.80

 \implies \: \sf x \:  =  0.10 \:

 \boxed{ \sf \:  \therefore \: x =0 .10 \: m \: or \: 10 \: cm}

Thus, the Electric Potential is zero at 10cm at right side of charge q(1) or (16 - 10) = 6cm at left side of charge q(2).

Similar questions