Physics, asked by vijaydesai6098, 9 months ago

Two charges of 4uc and 7 uc are placed 4.5 cm apart .Find mutual P.E of the system​

Answers

Answered by Anonymous
33

Answer:

 \boxed{\mathfrak{Mutual \ P.E \ of \ the \ system = 4.8 \ J}}

Given:

Value of two charges:

 \sf q_1 = 4  \: \mu C = 4 \times  {10}^{ - 6}  \: C

\sf q_2 = 7 \: \mu C = 7 \times  {10}^{ - 6}  \: C

Separation between two charges:

 \sf r_{12}  = 4.5 \: cm = 0.045 \: m

We know:

 \sf k = 9 \times  {10}^{9}

To Find:

Mutual Potential Energy of the system (U)

Explanation:

Electric Potential Energy:

 \boxed{ \bold{\sf U = \frac{kq_1 q_2}{r_{12}}}}

Substituting value of  \sf q_1, q_2, r_{12} & k in the equation:

 \sf \implies U =  \frac{9 \times  {10}^{9} \times 4 \times  {10}^{ - 6}  \times 7 \times  {10}^{ - 6}  }{0.045}  \\  \\  \sf \implies U = \frac{9 \times 4 \times 6 \times  {10}^{9 - 6 - 6} }{0.045}  \\  \\  \sf \implies U = \frac{ \cancel{9 } \times 4 \times 6 \times  {10}^{9 - (6 + 6)} }{ \cancel{9} \times 0.005}  \\  \\  \sf \implies U = \frac{4 \times 6 \times  {10}^{9 - 12} }{5 \times  {10}^{ - 3} }  \\  \\  \sf \implies U = \frac{4 \times 6 \times  {10}^{ - 3} }{5 \times  {10}^{ - 3} }  \\  \\  \sf \implies U = \frac{24 \times  {10 }^{ - 3 - ( - 3)} }{5}  \\  \\  \sf \implies U = \frac{24 \times  {10}^{ - 3 + 3} }{5}  \\  \\  \sf \implies U = \frac{24 \times  {10}^{0} }{5}  \\  \\  \sf \implies U = \frac{24}{5}  \\  \\  \sf \implies U =4.8 \: J

 \therefore

Mutual Potential Energy of the system (U) = 4.8 J

Similar questions