Math, asked by prairborne, 3 months ago

Two chords AB and AC of a circle are 8cm and 6cm respectively. If the distance of the centre from chord AB
is 3cm, then the distance of centre from chord AC is

Answers

Answered by riddhima287
0

AB= 8cm and CD = 6cm are two parallel chords of a circle with centre O. The distance between AB and CD is 1cm. ... ∴∆OCN is a right triangle with OC=OA (radius of the circle)

Answered by harshitujhwal497
0

Answer:

Given−

AB=8cmandCD=6

cmaretwoparallelchorddsofacirclewithcetreO

.ThedistancebetweenAB&CDis1cm.

Tofindout−Theradiusofthegivencircle=?Solution−WedropperpendicularOMonABfromO.

OMmeetsABatM.

OMisextendedtomeetCDatN

.OA&OCarejoined

∴OA&OCareradiiofthegivencircle.

OM⊥AB⟹∠AMO=90o=∠CNO

(Given−AB=8cmandCD=6

cmaretwoparallelchorddsofacirclewithcetreO.

ThedistancebetweenAB&CDis1cm.Tofindout−Theradiusofthegivencircle=?Solution−WedropperpendicularOMonABfromO.

OMmeetsABatM.

OMisextendedtomeetCDatN.

OA&OCarejoined.

∴OA&OCareradiiofthegivencircle.

OM⊥AB⟹∠AMO=90o=∠CNO

(correspondinganglesoftwoparallellines

)SoON⊥CD.

SoMNisthedistancebetweenAB&CDi.

eMN=1cm.

LetOM=xcm,

thenON=(x+1)cm.

NowOM⊥AB⟹AM=21AB=2

NisthedistancebetweenAB&CDi.e

MN=1cm.LetOM=xcm,

thenON=(x+1)cm.

NowOM⊥AB⟹AM=21AB=2

Similar questions