Two chords AB and AC of a circle are 8cm and 6cm respectively. If the distance of the centre from chord AB
is 3cm, then the distance of centre from chord AC is
Answers
AB= 8cm and CD = 6cm are two parallel chords of a circle with centre O. The distance between AB and CD is 1cm. ... ∴∆OCN is a right triangle with OC=OA (radius of the circle)
Answer:
Given−
AB=8cmandCD=6
cmaretwoparallelchorddsofacirclewithcetreO
.ThedistancebetweenAB&CDis1cm.
Tofindout−Theradiusofthegivencircle=?Solution−WedropperpendicularOMonABfromO.
OMmeetsABatM.
OMisextendedtomeetCDatN
.OA&OCarejoined
∴OA&OCareradiiofthegivencircle.
OM⊥AB⟹∠AMO=90o=∠CNO
(Given−AB=8cmandCD=6
cmaretwoparallelchorddsofacirclewithcetreO.
ThedistancebetweenAB&CDis1cm.Tofindout−Theradiusofthegivencircle=?Solution−WedropperpendicularOMonABfromO.
OMmeetsABatM.
OMisextendedtomeetCDatN.
OA&OCarejoined.
∴OA&OCareradiiofthegivencircle.
OM⊥AB⟹∠AMO=90o=∠CNO
(correspondinganglesoftwoparallellines
)SoON⊥CD.
SoMNisthedistancebetweenAB&CDi.
eMN=1cm.
LetOM=xcm,
thenON=(x+1)cm.
NowOM⊥AB⟹AM=21AB=2
NisthedistancebetweenAB&CDi.e
MN=1cm.LetOM=xcm,
thenON=(x+1)cm.
NowOM⊥AB⟹AM=21AB=2