Math, asked by ayush9beyblader, 7 days ago

Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.​

Answers

Answered by ItzBrainlyLords
12

 \huge \star \:  \:   \underline{ \red{ \mathfrak{solution  }} : }

⍟ Given :

  • AB = 5cm
  • CD = 11cm
  • NM = 6cm (Distance between AB and CD
  • OM ⏊ CD
  • OM = x
  • ON = 6 - x

⍟ To Find :

  • Value of radius = r
  • Value of 'x'(OM)

⍟ On Solving :

Since , OM ⏊ CD

  • M is the mid point of CD

 \large \star  \:  \underline{ \bold{\: theorem : }}

➜ The perpendicular from the centre of the circle ta a chord bisects the chord !

  • Let OM = x cm

So, MD = MC

 \large \sf \implies \:  MD =  \dfrac{1}{2} (11) \\  \\  \large \therefore  \: \bold{ MD =   \frac{11}{2} cm} \\

  • According to Theorem :

N is the mid point of AB

 \large \star  \:  \underline{ \bold{\: theorem : }}

➜ The perpendicular from the centre of the circle ta a chord bisects the chord !

So, NB = AN

 \large \sf \implies \: NB =  \dfrac{1}{2} (5) \\  \\  \large \therefore  \: \bold{ MD =   \frac{5}{2} cm} \\

✪ In Right angled triangle ONB :

  • Pythagoras Theorem :

 \large  \looparrowright \: \boxed{ \rm \:   \pink{{h}^{2}  =  {b}^{2}  +  {p}^{2} }}

 \large \implies \sf \: OB²=ON²+NB² \\  \\  \large \sf \mapsto \:  {r}^{2}  = (6 - x {)}^{2}  +  {\left( \frac{5}{2}   \right)}^{2}  \longrightarrow \boxed{ \rm1}

✪ In Right angled triangle OMD

  • Pythagoras Theorem :

 \large  \sf \mapsto \:  {r}^{2}  =  {x}^{2}  +  {\left( { \dfrac{11}{2} } \right) }^{2}  \longrightarrow \boxed{2}

 \large \star \:  \: from  \:  \: \boxed{1} \:  \: and \:  \: \boxed{2} \:  \: we \:  \: get :

 \\  \large \sf \looparrowright \: (6 - x {)}^{2}  + { \left( \frac{5}{2}   \right)}^{2}  =  {x}^{2}  + { \left( \frac{11}{2}   \right)}^{2} \\  \\  \large \sf \implies \: 36 - 12x +  {x}^{2}  +  \frac{25}{4}  =  {x}^{2}  +  \frac{121}{4}  \\  \\  \large \rm \star \: on \:  \: transposing \:  \: the \:  \: terms \:  -  \\  \\  \large \sf \implies \: 12x = 36 +  \frac{25}{4}  -  \frac{121}{4}  \\  \\  \large \sf \implies \: 12x = 12 \\  \\  \large \sf \implies \: x =  \frac{ \cancel{12}} {\cancel{12} } \\  \\  \large \therefore \:  \:  \underline{ \boxed{  \green{\sf \: x = 1}}}

➜ Putting x = 1 in [2], we get :

 \large \sf \looparrowright \:  {r}^{2}  =  {1}^{2}  + { \left( \dfrac{11}{2}   \right)}^{2} \\  \\  \large \implies \sf \:  {r}^{2}  = 1 +  \frac{121}{4}  \\  \\  \large \implies \sf \:  {r}^{2}  =  \frac{125}{4}  \\  \\  \large \implies \sf \:  {r} =  \sqrt{ \frac{125}{4} }

  \\  \\  \large \therefore \:  \purple{ \underline{ \boxed{ \sf \green{radius =   \frac{5 \sqrt{5} }{2} }}}}

______________________________________

⍟ Formulas , identity and Theorem :

  • Pythagoras Theorem

 \large \rm \mapsto \:  {h}^{2}  =  {b}^{2}  +  {p}^{2}

  • Theorem

➜ The perpendicular from the centre of the circle ta a chord bisects the chord !

  • Identity

 \large \mapsto \:  \rm \: (a +  {b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

Attachments:
Similar questions