Math, asked by Anonymous, 10 months ago

two chords AB, CD of lengths 5cm and 11cm respectively of a circle are parallel. If the distance between AB and CD is 3cm, find the radius of the circle. ​

Answers

Answered by Anonymous
32

Construct circle in AB parallel to CD on opposite sides.

Draw M,N perpendicular to AB and CD.

According to figure,

In triangle CNO,

 {r}^{2}  =  \:  \:  \:  \:  ( { \frac{11}{2} })^{2}   \:  \:  \:  \:  +  ({3 - x})^{2}  \\ r \:  \:   =  \:  \:  \sqrt{ ({ \frac{11}{2} })^{2} }  +  \:  \: ( {3 - x})^{2}  \:  \:  \:  \:  \in: (equation 1) \\ in \: triangle \: amo \\  {r}^{2}  =  ({ \frac{5}{2}) }^{2}  +  {x}^{2}  \\ r \:  \:  =  \:  \:  \sqrt{ ({ \frac{5}{2} })^{2} }  +  {x}^{2}  \\ from \: equation \: 1st \: and \: 2nd \\  \sqrt{ ({ \frac{11}{2} )}^{2} }  +  {3 - {x}^{2}  x}^{2}   =  \:  \:  \sqrt{ ({ \frac{5}{2} })^{2} }  +  {x}^{2}  \\ (squaring \: both \: sides) \\  ({ \frac{11}{2} })^{2}  + ( {3 - x)}^{2}  =  \:  \: ( { \frac{5}{2} })^{2}  +  {x}^{2}  \\  \frac{121}{4}  +  {3}^{2}  +  {x}^{2}  =  \:  \:   ({ \frac{5}{2} })^{2}  +  {x}^{2}  \\  \\  \frac{121}{4}  + 9 +  {x}^{2}  - 2 \times 3 \times x =  \frac{25}{4}  +  { x}^{2}  \\  \frac{121}{4}  + 9 +  {x}^{2}  - 6x =  \frac{25}{4}  +  {x}^{2}  \\  \frac{121 + 36}{4}  +  {x}^{2}  - 6x =  \frac{25}{4}  +  {x}^{2}  \\  \frac{157}{4}  +  {x}^{2}  - 6x =  \frac{25}{4}  +  {x}^{2}  \\  {x}^{2}  -  {x}^{2}  - 6x \:  =  \frac{25}{4}  -  \frac{157}{4}  \\  - 6x \:  =  \frac{ - 132}{4}  \\ x =  \frac{331}{6}  \\ x =  \frac{11}{2}  \\ r =  \sqrt{( { \frac{5}{2} })^{2} }  +  ({ \frac{11}{2} })^{2}  \\ r =  \sqrt{ \frac{25 + 121}{4} }  \\ r =   \sqrt{ \frac{146}{4} }  \\ r =  \sqrt{ \frac{73}{2} }

Attachments:
Answered by Anonymous
8

Step-by-step explanation:

Let O be the centre.

Let distance of first chord from centre be x and that of second chord be y.

Let x be the distance from chord of 5cm and y be the distance from chord of 11 cm.

We know that,

x+y=3

i.e. y=3-x...(1)

The perpendicular drawn from the centre of the cicle bisects the chord.

By pythagorus theorem.

r^2=(2.5)^2+x^2...(2)

r^2=(5.5)^2+y^2...(3)

In eq.(2) and (3) LHS is equal therefore RHS will also be equal.

6.25+x^2=30.25+y^2

x^2-y^2=24...(4)

Substituting eq(1) in eq(4).

x^2-(3-x)^2=24

x^2-(9-6x+x^2)=24

x^2-9+6x-x^2=24

-9+6x=24

6x=33

x=5.5

Substituting x=5.5 in eq(2)

r^2=(2.5)^2+(5.5)^2

r^2=6.25+30.25

r^2=36.50

Taking square root of both sides

r=6.04 cm.(approx)

Similar questions