Math, asked by sakshiindrale0, 4 months ago

Two chords PQ and MN
of length 11 cm and 5 cm respectively of a circle are parallel to each other and are on the opposite side of its Centre is the distance between chord MN and chord PQ is 6 cm find the radius of the circle​

Answers

Answered by mreema2002
1

Step-by-step explanation:

Given−

Oisthecentreofacirclewithradius=r.

PQ&MNaretwoparallelchordswhen

PQ=11cmandMN=5cm.

ThedistanceABbetweenPQ&MN,throughthecentre

is6cm.

Tofindout−

r=?

Solution−

ThelineABistheperpendicuardistancebtweenPQ&MN.

AtthesametimeOA&OBarethedistancesofPQ&MN

fromthecenterO.

∴∠OAQ=∠OBN=90

o

sincetheperpediculardistance

ofachordfromthecentrebisectsthechordatrightangle.

i.eΔOAQ&ΔOBNarerighttriangleswithhypotenusesas

OQ=randON=rrespectively.

AlsoOA=

2

11

cmandOB=

2

5

cm.

LetustakeOA=x.ThenOB=AB−OA=6−x.

Then,applyingPythagorastheorem,wehave

OA

2

+AQ

2

=r

2

andOB

2

+BN

2

=r

2

.

∴OA

2

+AQ

2

=OB

2

+BN

2

⟹x

2

+(

2

11

)

2

=(6−x)

2

+(

2

5

)

2

⟹x=1.

∴r=

OA

2

+AQ

2

=

x

2

+(

2

11

)

2

=

1

2

+(

2

11

)

2

cm=

2

5

5

cm

Similar questions