Two circle od radii 26 cm and 10 cm are concentric.Find the length of a chord of the outer circle which touches the inner
Answers
Step-by-step explanation:
Answer
Given−
OisthecentreoftwoconcentriccirclesandAB,which
isachordoftheoutercircle,touchestheinnercircleatP.
Theradiusoftheinnercircleis10cmand
theradiusoftheoutercircleis26cm.
Tofindout−
thelengthofAB=?
Solution−
WejoinOP.
ThenOPisaradiusthroughPwhichisthepointofcontact
ofABtotheinnercircle.i.ePO=10cm.
AlsowejoinOA.ThenOAistheradiusofthe
outercircle=26cm.
NowOP⊥AB⟹∠OPA=90
o
sincetheradiusofacirclethroughthe
pointofcontactofatangenttothecircleisperpedicular
tothetangent.
∴ΔOPAisarightonewithOAashypotenuse.
So,applyingPythagorastheorem,
AP=
OA
2
−OP
2
=
26
2
−10
2
cm=24cm
ButAB=2APsincetheperpendicular,droppedfromthecenter
ofacircletoanyofitschord,bisectsthelatter.
i.ePisthemidpointofAB.
∴AB=2×24cm=48cm.
Answer:
let r be 26 cm
and R be 10 cn
A center of both circles
AB perpendicular to DC
as radius from Centre is perpendicular
to the tangent at the point of
Thus ∆ ABC
R^2+BC ^2= r^2
BC ^2 = 26^2 - 10^2
BC ^2 = 676-100
BC^3 = 576
BC = √576
BC = 24cm
similarly, DB = BC
Thus DC = 2BC
DC =24×2
DC = 48cm = chord length