Math, asked by ritikajakhotiya7354, 11 months ago

Two circles are placed in an equilateral triangle ,one small and other big.the ratio of radius of smaller circle to larger one is

Answers

Answered by suchindraraut17
12

Radius of smaller circle : Radius of larger circle = 1:3

Step-by-step explanation:

In-radius of equilateral triangle of side a =\frac{a}{2\sqrt{3}}

Diameter of larger circle = \frac{a}{2\sqrt{3}}

Here common tangent PQ touches the two circle at R, center of smaller circle is I.

Now, PQ║ BC. AR ⊥ PQ. Also,Δ PQR is an equilateral triangle with  a straight line AORID,\.

AD = \frac{\sqrt{3}}{2}a

RD = \frac{a}{\sqrt{3}}

AR = \frac{\sqrt{3}}{2}a - \frac{a}{\sqrt{3}}

     =\frac{3a -2a}{2\sqrt{3}} = \frac{a}{2\sqrt{3}}

AR = \frac{1}{3} AD

Radius of smaller circle = \frac{1}{3} radius\ of\ larger\ circle

Radius of smaller circle : Radius of larger circle = 1:3

Attachments:
Answered by aryankumarsingh56
2

Step-by-step explanation:

In-radius of equilateral triangle of side a =\frac{a}{2\sqrt{3}}a=23a

Diameter of larger circle = \frac{a}{2\sqrt{3}}23a

Here common tangent PQ touches the two circle at R, center of smaller circle is I.

Now, PQ║ BC. AR ⊥ PQ. Also,Δ PQR is an equilateral triangle with  a straight line AORID,\.

AD = \frac{\sqrt{3}}{2}a23a

RD = \frac{a}{\sqrt{3}}3a

AR = \frac{\sqrt{3}}{2}a - \frac{a}{\sqrt{3}}23a−3a

     =\frac{3a -2a}{2\sqrt{3}} = \frac{a}{2\sqrt{3}}233a−2a=23a

AR = \frac{1}{3} AD31AD

Radius of smaller circle = \frac{1}{3} radius\ of\ larger\ circle31radius of larger circle

Radius of smaller circle : Radius of larger circle = 1:3

Similar questions