Math, asked by alpanadubeyt, 9 months ago

Two circles each of radius 2 and centres O and P touch each other as shown in the figure. If AD and
BD are tangents, then the length of BD is​

Attachments:

Answers

Answered by CharmingPrince
13

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

Two circles each of radius 2 and centres O and P touch each other as shown in the figure. If AD and BD are tangents, then find the length of BD

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Given:}}}

☆《Radius \ of \ each \ circle = 2cm》☆

☆《AD \ and \ BD \ are \ are \ tangents》☆

\boxed{\red{\bold{Construction:}}}

☆《Join the centre P to the point of contact and name it PC.》☆

\boxed{\red{\bold{Solutuon:}}}

In\underline{\triangle}APC:

AP^2 - CP^2 = AC^2

(\because Pythagoras \ theorem)

(OA + OQ + OP)^2 - (2)^2 = AC^2

(2+2+2)^2 - 2^2 = AC^2

AC^2 = 6^2 - 2^2

AC^2 = 36 - 4

AC^2 = 32

AC = 16 \sqrt{2}

In\underline{\triangle} ACP and\underline{\triangle} ABD:

\angle ACP = \angle ABD(each 90⁰)

\angle CAP = \angle ABD(common)

By \ AA \ similarity \ criterion, \\ \triangle ACP \sim \triangle ABD

Taking side proportional:

\displaystyle{\frac{AC}{AB}} = \frac{CP}{BD}

\displaystyle{\frac{16 \sqrt{2}}{8}} = \frac{2}{BD}

BD = \displaystyle{\frac{2 × 8}{16 \sqrt{2}}}

BD = \displaystyle{\frac{1}{\sqrt{2}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Attachments:
Similar questions