Two circles of radii 18 cm and 8 cm touch externally. Find the length of a direct common tangent to the two circles.
Answers
Two circles of radii 18cm and 8cm touch externally. The length of a direct common tangent to the two circles is
Share
Study later
ANSWER
Given−
AB Is thecommon tangentoftwocircles,who touch
eachother.
ABistheircommontangent.
ThecetreofonecircleisPwithradius=8cm
andthecetreofanothercircleisQwithradius=18cm.
Solution−
WejoinPQ,AP&PQ.
AperpendicularPNisdroppedfromPtoBQatN.
Now(AP&BQ)⊥ABsincetheradiusthroughthepoint
ofcontactofatangenttoacircleisperpendicular
tothetangent.
∴∠PAB=90
o
=∠QBA.
Also∠PNB=∠PNQ=90
o
sincePN⊥PQ.
∴ABNPisarectangle.
SoBN=AP=8cmandPN=AB.
∴NQ=BQ−BN=(18−8)cm=10cm.
AgainPQ=(8+18)cm=26cmsincethedistancebetweenthecentres
oftwocircles,touchingeachother,isthesumoftheirradii.
SoΔPNQisarighttrianglewithPQashypotenuse.
∴ByPythagorastheorem,weget
PN=
PQ
2
−NQ
2
=
26
2
−10
2
cm=24cm.
∴PN=AB=24cm.
Ans−OptionD.
I hope it helps you and follow me and please mark me brainlist