Math, asked by sulot29, 7 months ago

Two circles of radii 8 cm and 3 cm have a direct common tangent of length 10 cm. Find the
distance between their centres, upto two places of decimal.
part.​

Answers

Answered by Uriyella
10
  • The distance between those centres = 11.18 cm.

Diagram :

\setlength{\unitlength}{2mm}\begin{picture}(0,0)\put(0,0){\thicklines\circle{10}}\put(20,0){\thicklines\circle{6.9}}\put(0,0){\thicklines\line(3,0){4cm}}\put(0,0){\thicklines\line(0,3){7mm}}\put(0,3.5){\thicklines\line(5,0){4cm}}\put(20,0){\thicklines\line(0,3){7mm}}\put(-1,-1){\sf\footnotesize A}\put(-1,4){\sf\footnotesize B}\put(20,4){\sf\footnotesize C}\put(20,-1){\sf\footnotesize D}\put(0.7,3.4){\line(0,-3){1.3mm}}\put(0,2.7){\line(3,0){1.5mm}}\put(20,2.7){\line(-3,0){1.5mm}}\put(19.3,3.5){\line(0,-3){1.5mm}}\put(-2.8,1.5){\sf\footnotesize 8cm}\put(8,5){\sf\footnotesize 10cm}\put(20.3,1.5){\sf\footnotesize 3cm}\end{picture}

Given :

Radius of two circles :

  1. The radius of the first circle (AB) = 8 cm.
  2. The radius of the second circle (CD) = 3 cm.
  • The length of a direct common tangent (BC) = 10 cm.

To Find :

  • The distance between their centres.

Solution :

We have to find the distance between their centres (AD).

We know that,

 \boxed{ \rm{ \green{length \: of \: direct \: tangent =  \sqrt{ {(d)}^{2}  -  {( r_{1} -   r_{2})}^{2} }  }}}

We have,

 \bullet \:  \:  \rm length \: of \: direct \: tangent = BC = 10 \: cm  \\  \\ \bullet  \:  \:  \rm  r_{1} = AB = 8 \: cm \\  \\  \bullet \:   \:  \rm  r_{2} = CD = 3 \: cm \\  \\  \bullet \:  \:  \rm d = AD =   \: ?

Now, substitute all the given values in the formula of "Length of direct tangent".

:\implies  \rm BC = \sqrt{ {AD}^{2}  -  {(AB - CD)}^{2} }  \\  \\  : \implies \rm 10 \: cm =   \sqrt{ {AD}^{2}  - {(8 \: cm - 3 \: cm)}^{2}} \\  \\  :  \implies \rm 10 \: cm =  \sqrt{ {AD}^{2} -  {(5 \: cm)}^{2}  }  \\  \\ : \implies \rm {(10 \: cm)}^{2}  =  {AD}^{2}  - 25 \:  {cm}^{2}  \\  \\  :  \implies \rm100  \: {cm}^{2}  =  {AD}^{2}  -  {25 \: cm}^{2}  \\  \\  :  \implies \rm{ 100 \: cm}^{2}   +  {25 \: cm}^{2}  =  {AD}^{2}  \\  \\  :  \implies \rm125  \: {cm}^{2}  =  {AD}^{2}  \\  \\  :  \implies \rm \sqrt{125  \: {cm}^{2} }  = AD \\  \\  :  \implies  \rm\sqrt{5 \times 5 \times 5 \:   {cm}^{2} } = AD \\  \\   : \implies \rm5 \sqrt{5} \:  cm = AD \\  \\  :  \implies  \rm11.18 \: cm = AD \\  \\    \:  \therefore  \:  \:  \rm AD = 11.18 \: cm

Hence,

The distance between the centres of two circles is 11.18 cm.

Similar questions