Math, asked by DynamicNinja, 4 months ago

Two circles of radius r units - one centrally positioned on the chord and another as the incircle of the triangle - are positioned in the semicircle of radius 13 units.

Determine the area of the triangle in units squared.​

Attachments:

Talentedgirl1: what is name of the book
Talentedgirl1: But I have tell the answer
Talentedgirl1: If helpful, mark me Brainliest

Answers

Answered by Anonymous
50

Answer:

 \LARGE{ \underline{\underline{ \pink{ \bf{Required \: answer:}}}}}

★Consider the ∆aob,

ob = 0.5 units

ab = 1 unit

⇒ oa =  \sqrt{1² - 0.5²}  =  \frac{ \sqrt{3} }{2} umits

Total \:  area  \: of \:  triangles \:  aob \:  and \:  boc \:  =  \frac{ \sqrt{3} }{4} </p><p></p><p>

Area  \: of \:  sector \:  ab =  \frac{1}{2} r²∠abc =  \frac{\pi}{3} </p><p></p><p></p><p></p><p>

★Area of intersection =2(Area of sector − Area of triangles)

 = ( \frac{\pi}{3}  -   \frac{ \sqrt{3} }{4} )

 =  \frac{4\pi - 3 \sqrt{3} }{6} sq.square

Explanation:-


Anonymous: Assan sa puchiyo
DynamicNinja: theek
Anonymous: nikal bhochlike
ekam2903: hi
Anonymous: Fabulous answer!! -,-
Answered by Talentedgirl1
4

Answer:

Answer:

\LARGE{ \underline{\underline{ \pink{ \bf{Required \: answer:}}}}}

Requiredanswer:

★Consider the ∆aob,

ob = 0.5 units

ab = 1 unit

⇒ oa = \

sqrt{1² - 0.5²} = \frac{ \sqrt{3} }{2} umits⇒oa= </p><p>1²−0.5²

=

2

3

umits

Total \: area \: of \: triangles \: aob \: and \: boc \: = \frac{ \sqrt{3} }{4} &lt; /p &gt; &lt; p &gt; &lt; /p &gt; &lt; p &gt;Totalareaoftrianglesaobandboc=

4

3

</p><p></p><p>

Area \: of \: sector \: ab = \frac{1}{2} r²∠abc =

\frac{\pi}{3} &lt; /p &gt; &lt; p &gt; &lt; /p &gt; &lt; p &gt; &lt; /p &gt; &lt; p &gt; &lt; /p &gt; &lt; p &gt;Areaofsectorab=

2

1

r²∠abc=

3

π

</p><p></p><p></p><p></p><p>

★Area of intersection =2(Area of sector − Area of triangles)

= ( \frac{\pi}{3} - \frac{ \sqrt{3} }{4} )=(

3

π

4

3

)

= \frac{4\pi - 3 \sqrt{3} }{6} sq.square= </p><p>6</p><p>4π−3 </p><p>3

sq.square

Explanation:-

Similar questions