Two circular cylinders of equal volume have their heights in the ratio 1 : 2. Ratio of their radii is
A. 1 :
B. : 1
C. 1: 2
D. 1 : 4
Answers
Answer:
\text{Let the radii of the two cylinders be $r_1\;$and$\;r_2$ }Let the radii of the two cylinders be r
1
andr
2
\text{and heights be $h_1\;$and$\;h_2$}and heights be h
1
andh
2
\textbf{Given:}Given:
\pi\,{r_1}^2\,h_1=\pi\,{r_2}^2\,h_2πr
1
2
h
1
=πr
2
2
h
2
{r_1}^2\,h_1={r_2}^2\,h_2r
1
2
h
1
=r
2
2
h
2
\frac{h_1}{h_2}=\frac{{r_2}^2}{{r_1}^2}
h
2
h
1
=
r
1
2
r
2
2
\frac{1}{2}=\frac{{r_2}^2}{{r_1}^2}
2
1
=
r
1
2
r
2
2
\frac{{r_2}^2}{{r_1}^2}=\frac{1}{2}
r
1
2
r
2
2
=
2
1
\text{Taking reciprocals, we get}Taking reciprocals, we get
\frac{{r_1}^2}{{r_2}^2}=\frac{2}{1}
r
2
2
r
1
2
=
1
2
\implies\frac{r_1}{r_2}=\frac{\sqrt{2}}{1}⟹
r
2
r
1
=
1
2
\implies\bf\;r_1:r_2=\sqrt{2}:1⟹r
1
:r
2
=
2
:1
\therefore\textbf{Ratio of their radii is }\bf\;\sqrt2:1∴Ratio of their radii is
2
:1