Science, asked by Mrayush3909, 9 months ago

Two circularly polarized waves traveling normally out of the page have electric fields given by Eleft = 3 et of and Eright = 4 ei t volt / meter. For the resultant wave, find the sense of rotation, axial ratio, y, ɛ, T, 6, and the average power per unit area conveyed by the resultant wave.

Answers

Answered by rd535953
1

Answer:

The electric field vectors of a traveling circularly polarized electromagnetic wave. This wave is right-circularly-polarized, since the direction of rotation of the vector is related by the right-hand rule to the direction the wave is moving; or left-circularly-polarized according to alternative convention.

In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude but its direction rotates at a constant rate in a plane perpendicular to the direction of the wave.

In electrodynamics the strength and direction of an electric field is defined by its electric field vector. In the case of a circularly polarized wave, as seen in the accompanying animation, the tip of the electric field vector, at a given point in space, describes a circle as time progresses. At any instant of time, the electric field vector of the wave indicates a point on a helix oriented along the direction of propagation. A circularly polarized wave can rotate in one of two possible senses: right circular polarization in which the electric field vector rotates in a right-hand sense with respect to the direction of propagation, and left circular polarization in which the vector rotates in a left-hand sense.

Circular polarization is a limiting case of the more general condition of elliptical polarization. The other special case is the easier-to-understand linear polarization.

The phenomenon of polarization arises as a consequence of the fact that light behaves as a two-dimensional transverse wave.

Similar questions