Physics, asked by Harpreetdhanju8757, 1 year ago

Two coherent sources of different intensities send waves which interfere. The ratio of maximum intensity to the minimum intensity is 25. The intensities of the sources are in the ratio
(a) 25 : 1(b) 5 : 1(c) 9 : 4(d) 25 : 16

Answers

Answered by abhi178
70
answer : option (c) 9 : 4


explanation : Two coherent sources of different intensities I_1 and I_2 do interfere.

then, maximum intensity, I_{max}=(\sqrt{I_1}+\sqrt{I_2})^2

minimum intensity, I_{min}=(\sqrt{I_1}-\sqrt{I_2})^2

a/c to question,

\frac{I_{max}}{I_{min}}=\frac{(\sqrt{I_1}+\sqrt{I_2})^2}{\sqrt{I_1}-\sqrt{I_2})^2}

or, \frac{25}{1}=\frac{5^2}{1^2}=\frac{(\sqrt{I_1}+\sqrt{I_2})^2}{\sqrt{I_1}-\sqrt{I_2})^2}

or, \frac{5}{1}=\frac{(\sqrt{I_1}+\sqrt{I_2})}{(\sqrt{I_1}-\sqrt{I_2})}

or, 5(\sqrt{I_1}-\sqrt{I_2})=\sqrt{I_1}+\sqrt{I_2}

or, 4\sqrt{I_1}=6\sqrt{I_2}

hence, \frac{I_1}{I_2}=\frac{9}{4}
Similar questions