Math, asked by parmardeep1955, 1 year ago

Two coherent waves with their intensities in the ratio i1/i2=a

Answers

Answered by MssShreya
0

Answer:

HERE IS YOUR ANSWER

Step-by-step explanation:

According to the question/

Maximum intensity is given by (√i1 + √i2)^2 and minus in between if it is minimum intensity. Hope it helps you. Intensity of the wave is directly proportional to square of amplitude. Therefore, ratio of maximum to minimum intensity is 4:1.

Answered by pragyakirti12345
0

Answer: (2√a)/(a + 1)

Concept : Wave Optics

Given : \frac{i_{1} }{i_{2} }  = a

To Find : The ratio of  \frac{I_{max} - I_{min}  }{I_{max} + I_{min} }

Step-by-step explanation:

According to the question ,

Two coherent waves with their intensities in the ratio  \frac{i_{1} }{i_{2} }  = a.

Intensity,  I = I_{1} + I_{2} + 2\sqrt{I_{1} I_{2} }   cos \alpha

at Δα = 0, I = I_{max}

                   = I_{1}  + I_{2} + 2\sqrt{I_{1} I_{2} }   * 1

                   = (\sqrt{I_{1} }  + \sqrt{I_{2} }  )^{2}

at Δα = \pi, I = I_{min}

                   = I_{1}  + I_{2} + 2\sqrt{I_{1} I_{2} }   * (-1)

                   = (\sqrt{I_{1} }  - \sqrt{I_{2} }  )^{2}

∴  \frac{I_{max} - I_{min}  }{I_{max} + I_{min} } = \frac{ (\sqrt{I_{1} }  + \sqrt{I_{2} }  )^{2}  -  (\sqrt{I_{1} }  - \sqrt{I_{2} }  )^{2} }{  (\sqrt{I_{1} }  + \sqrt{I_{2} }  )^{2} +  (\sqrt{I_{1} }  - \sqrt{I_{2} }  )^{2} }

                   = \frac{4 \sqrt{I_{1} I_{2} } }{2(I_{1} +  I_{2} )}

                  = \frac{4 \sqrt{I_{1} * \frac{I_{1} }{a} }  }{2(I_{1} +  \frac{I_{1} }{a}  )}

                 = \frac{2}{\sqrt{a} }  * (\frac{a}{a +1} )

                 = \frac{2\sqrt{a} }{(a + 1)}

                   

#SPJ2

Similar questions