Two common tangent to the circle x²+ y² = 2a² and parabola y² = 8ax are ?
Answers
Answered by
4
Hi !!!
Solution :-
Any tangent to the parabola y² = 8ax is
y = mx + 2a /m ------(1)
if ( 1) is a tangent to the circle x² + y² = 2a²
then ,
= > \sqrt{2a} = + - \frac{2a}{m \sqrt{m ^{2} + 1} }=>2a=+−mm2+12a
=> m² ( 1 + m² ) = 2
=> ( m² + 2 ) ( m² - 1 ) = 0
=> m = +- 1
so from , (1) y = +- ( x + 2a )
_______________________________
Hope it helps !!
muskraj ❤
Solution :-
Any tangent to the parabola y² = 8ax is
y = mx + 2a /m ------(1)
if ( 1) is a tangent to the circle x² + y² = 2a²
then ,
= > \sqrt{2a} = + - \frac{2a}{m \sqrt{m ^{2} + 1} }=>2a=+−mm2+12a
=> m² ( 1 + m² ) = 2
=> ( m² + 2 ) ( m² - 1 ) = 0
=> m = +- 1
so from , (1) y = +- ( x + 2a )
_______________________________
Hope it helps !!
muskraj ❤
RJRishabh:
well.... circles ka puch liya ...
Similar questions