Two complementary angles are given by 2x and 3X - 20* find them
Answers
Answer:
The Complementary angles are 44° and 46
Given :
The two complementary angles = 2x and (3x - 20)
To Find :
Measures of the angles
Solution :
Complementary angles are the angles which when added make the sum as 90°.
The angles are -
2x
(3x - 20)
★ \boxed{\sf{2x+(3x-20)=90}}
2x+(3x−20)=90
\longrightarrow⟶ 2x + (3x - 20) = 90
\longrightarrow⟶ 2x + 3x - 20 = 90
\longrightarrow⟶ 5x - 20 = 90
\longrightarrow⟶ 5x = 90 + 20
\longrightarrow⟶ 5x = 110
\longrightarrow⟶ x = 110/5
\longrightarrow⟶ x = 22
\rule{300}{1.5}
★ Value of 2x
\longrightarrow⟶ 2 × 22
\longrightarrow⟶ 44°
\rule{300}{1.5}
★ Value of (3x - 20)
\longrightarrow⟶ (3 × 22) - 20
\longrightarrow⟶ 66 - 20
\longrightarrow⟶ 46°
\therefore∴ The Complementary angles are 44° and 46°.
\mathfrak{\large{\underline{\underline{Verification :-}}}}
Verification:−
Add the Measures of the angles and check if the sum up and make 90°.
\longrightarrow⟶ 44 + 46
\longrightarrow⟶ 90
\therefore∴ The Complementary angles are 44° and 46°.