two complementory angles are such that two times the measure of one is equal to three times the measure of the other . The measure of the smaller angle is 45, 30,36 , none of these
Answers
Answer:
Let the complementary angles be x and (90
Let the complementary angles be x and (90 o
Let the complementary angles be x and (90 o −x).
Let the complementary angles be x and (90 o −x). Then, 2x=3(90
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x=
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o =54
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o =54 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o =54 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o =54 o ∴ The two angles are 54
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o =54 o ∴ The two angles are 54 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o =54 o ∴ The two angles are 54 o , 36
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o =54 o ∴ The two angles are 54 o , 36 o
Let the complementary angles be x and (90 o −x). Then, 2x=3(90 o −x)⇒ 2x=270 o −3x ⇒ 5x=270 o ⇒ x= 5270 o =54 o ∴ The two angles are 54 o , 36 o
Answer:
none of these
Step-by-step explanation:
let one angle be x
complementary angle= 90-x
2x= 3(90-x)
2x= 270-3x
5x=270
x=54