Math, asked by ndukweeze1, 10 months ago

Two concentric circles have circumference 88cm and 198cm respectively calculate the ratio of their radii and the ratio of their area

Answers

Answered by bagkakali
1

Answer:

let the 1st circle have radius x cm and the 2nd circle have radius ycm

so,

2πx=88

x=88/2π=88×7/2×22=14

again ,

2πy=198

y=198/2π=198×7/2×22=63/2

ratio of their radii is 14:63/2

= 28:63=4:9

ratio of their area

π(14)^2:π(63/2)^2

=(14)^2:(63/2)^2

=14×14:63/2×63/2

=2×2:9/2×9/2

=4:81/4

=16:81

Answered by Ataraxia
12

\sf{\bold{\green{\underline{\underline{Given}}}}}

Circles are concentric circles

Circumference of larger circle = 198cm

Circumference of inner circle = 88cm

_______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

Ratio of radius = ??

Ratio of area = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{Circumference = 2\pi R}}}}

Let the radius of outer circle be R

Let the radius of inner circle be r

: \sf\implies\:{\bold{ \dfrac{ 2\pi R}{ 2\pi r } = \dfrac{198}{88} }}

⠀⠀⠀⠀

: \sf\implies\:{\bold{ \dfrac{R}{r} = \dfrac{99}{44} }}

⠀⠀⠀⠀

: \sf\implies \: {\bold{ \dfrac{R}{r} = \dfrac{9}{4} }}

⠀⠀

\sf{\pink{\boxed{\bold{Ratio\: of \: radius = 9 : 4 }}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Area = \pi r^2}}}}

⠀⠀

: \sf\implies\: {\bold{\dfrac{\pi R^2}{\pi r^2}}}

⠀⠀⠀⠀

: \sf\implies\:{\bold{\dfrac{ R^2}{r^2} }}

⠀⠀⠀⠀

: \sf\implies\:{\bold{ \dfrac{9^2}{4^2} }}

⠀⠀⠀⠀

: \sf\implies\:{\bold{ \dfrac{81}{16} }}

⠀⠀⠀⠀

\sf{\pink{\boxed{\bold{Ratio\: of\: area =\dfrac{81}{16}}}}}

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

Ratio of circumference = 9:4

Ratio of area = 81 : 16

Similar questions