Physics, asked by anshuku4372, 1 year ago

Two concentric, thin metallic spheres of radii R₁ and R₂ (R₁ > R₂) bear charges Q₁ and Q₂ respectively. Then the potential at distance r between R₁ and R₂ will be [k=\frac{1}{4\pi\epsilon_{0}}]
(a) k\bigg \lgroup \frac{Q_{1}+Q_{2}}{r}\bigg \rgroup (b) k\bigg \lgroup \frac{Q_{1}}{r}+\frac{Q_{2}}{R_{2}}\bigg \rgroup (c) k\bigg \lgroup \frac{Q_{2}}{r}+\frac{Q_{1}}{R_{1}}\bigg \rgroup (d) k\bigg \lgroup \frac{Q_{1}}{R_{1}}+\frac{Q_{2}}{R_{2}}\bigg \rgroup

Answers

Answered by sp50
1

the answer is /frac {Q _{2}}{R_{2}}/bigg/r group [/ tex ]

Answered by talpadadilip417
1

Answer:

\scriptsize\mathtt \blue{=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r_{1 p }^{2}} \hat{ r }_{1 P }+\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2}}{r_{2 P }^{2}} \hat{ r }_{2 P }+\ldots .+\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{n}}{r_{n P }^{2}} \hat{ r }_{n P }}

Similar questions