Math, asked by nemichandverma63531, 11 months ago

Two cones have their base radii in ratio of 3:1 and the ratio of their heights as 1:3. Find the ratio of their surface areas.

Answers

Answered by nidhikumarip9
1

Answer:

3:1

Step-by-step explanation:

1 cone radius=3x

2 cone radius=x

1 cone slant height=10x^2^1/2

2 cone " " " """""""=""""""""""""

then CSA =3:1

sorry it's CSA but total surface area also like that ok

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{T.S.A_{1} : {T.S.A_{2} }  =6:1}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Ratio \: of \: radius\: of \: cone= 3 :1 \\  \\ \tt:  \implies Ratio \: of \: height\: of \: cone= 1 :3\\\\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Ratio \: of \: their \: T.S.A = ?

• According to given question :

\circ\:\text{Ratio\:of\:slant\:height\:is\:1}\\\text{because\:their\:radii\:and\:height}\\\text{ratio\:are\:in\:inverse.}\\\\\circ \: \tt{Slant \: height _{1} = Slant \: height_{2}}\\  \\ \bold{as \: we \: know \: that} \\  \tt:  \implies  \frac{T.S.A_{1}}{T.S.A_{2} }  =  \frac{\pi r_{1}l_{1}   + \pi { r_{1}}^{2} }{\pi r_{2}l_{2}   + \pi { r_{2}}^{2}}  \\  \\  \tt:  \implies  \frac{T.S.A_{1}}{T.S.A_{2} }  = \frac{\pi r_{1} ( l_{1} +  r_{1}) }{\pi r_{2}( l_{2} +  r_{2})  }  \\  \\  \tt:  \implies  \frac{T.S.A_{1}}{T.S.A_{2} }  = \frac{3(1 + 3)}{1(1 + 1)}  \\  \\  \tt:  \implies  \frac{T.S.A_{1}}{T.S.A_{2} }  = \frac{12}{2}  \\  \\  \tt:  \implies  \frac{T.S.A_{1}}{T.S.A_{2} }  = \frac{6}{1}  \\  \\    \green{\tt:  \implies  {T.S.A_{1}} : {T.S.A_{2} }  =6 : 1}

Similar questions