Math, asked by knightryder, 3 months ago

Two cones with same base radius 8 cm and height 15 cm are joined together along their bases. Find the surface area of the shape so formed.​

Answers

Answered by Anonymous
240

Question :-

  • Two cones with same base radius 8 cm and height 15 cm are joined together along their bases. Find the surface area of the shape so formed.

\:\:

{\large{\frak{\pmb{\underline{We\:have,}}}}}

\:\:

\sf\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\succ\: Radius\:of\:cone,\:r = 8\:cm

\sf\:\:\:\:\:\:\:\:\:\:\:\:\:\succ\: Height \:of\:cone,\:h = 15\:cm

\sf\:\:\:\:\:\:\succ\: Surface \:area \:of\: the \:shape \:=\:?

\:

{\Large{\underline{\tt Now}}},

\bf\Large\:{\diamond}\:{\bold { \underline{\small{\:Surface\:area\:of\:shape\:so\:formed}}}}

\:

\:\:=\:\:\:\Bigg[\tt\small CSA \\\ \sf\small of\: first\:cone \Bigg] + \Bigg[\tt \small CSA \\\ \sf\small of\: second\:cone \Bigg]

\:

\tt\:\:\:\:\:\:\:\:\:\:\:\:=\:2•Surface\:area\:of\:cone

\sf\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:|Since,\:both\:cones\:\sf\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:are\:identical|\:

\:

\sf\:\:\:\:\:\:\:\:\:=\:2×\pi r l=2×\pi×r×\bf\sf \displaystyle\sqrt{r²+h²}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:=\:2×\bf\dfrac{22}{7} ×8\bf\sf \displaystyle\sqrt{(8)²+(15)²}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\bf\dfrac{2×22×8×\bf\sf \displaystyle\sqrt{64+225}}{7}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\bf\dfrac{44×8×\bf\sf \displaystyle\sqrt{289}}{7}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\bf\dfrac{44×8×17}{7}

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\bf\dfrac{5984}{7}\:=\:854.85\:cm^²

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{=\frak{\red{855\:cm^{2}\:(approx)}}}}}

Answered by princeviolet
20

After joining, the surface area vill con of lateral surface areas of two cones. ist

cm

r = 8cm

h = 15cm

|= v8? + 152 = v64+225 = 289 = 17cm

Surface area = 2xrl = 2x3.14x8x17 = 854

Similar questions